Осевые сильфонные компенсаторы Ридан из нержавеющей стали с патрубками из углеродистой стали

Описание

 и область применения

Осевые компенсаторы Ридан предназначены для компенсации температурных удлинений трубопроводов систем горячего водоснабжения, отопления, а также трубопроводов промышленных систем с жидкими средами, которые неагрессивны к конструкционным материалам компенсаторов.

Осевые компенсаторы Ридан устанавливаются на стояках и магистральных трубопроводах систем отопления, ГВС многоэтажных зданий

Осевые компенсаторы состоят из многослойного сильфона (гофрированного цилиндра), выполненного из нержавеющей стали, и приваренных к нему патрубков, выполненых из углеродистой стали.

Все осевые компенсаторы Ридан оснащень внутренней гильзой, а также могут быть осна щены наружным кожухом для дополнительной защиты сильфона

Основные характеристики

Номинальное рабочее давление: PN 16 бар Температура среды: $-10 \ldots+95^{\circ} \mathrm{C}$.
Присоединение к трубопроводу: приварнOe
Число циклов срабатывания при полном осевом ходе: не менее 2000 циклов.

Номенклатура и

 кодовые номера для оформления заказаОсевой сильфонный компенсатор Ридан с патрубками под при-
варку, с внутренней гильзой и без наружного кожуха

Эскиз	DN, MM	PN, бар	Максимальная темп. перемещаемой среды $\mathrm{T}_{\text {макс }}{ }^{\circ} \mathrm{C}$	Осевой ход, мм	Монтажная длина, MM	Осевое усилие, H/мм	Эффективная площадь сильфона, cm ${ }^{2}$	Кодовый номер
	15	16	95	+12/-28	280	18	7,1	065H0040R
	20				280	18	7,1	065H0041R
	25				275	28	12,1	065H0042R
	32				310	36	16,4	065H0043R
	40				310	90	26,7	065H0044R
	50				310	90	26,7	065H0045R
	65				250	53	58,2	065H0046R
	80				255	79	78,5	065H0047R
	100				255	84	117,9	065H0048R
	125				255	137	168,6	082X9242R
	150				270	239	239,3	082X9243R
	200				260	226	441,5	082X9244R
	250				280	332	681,5	082X9245R
	300				270	378	945,4	082X9246R

Номенклатура и кодовые номера для оформления заказа (продолжение)

Осевой сильфонный компенсатор Ридан с патрубками под при-
варку, с внутренней гильзой и с наружным кожухом

Устройство и материалы

Поз.	Наименование	Материал
1	Патрубок	Сталь 1.0038
2	Сильфон	Коррозионностойкая сталь $1.4541 / 1.4404$
3	Кожух	Алюминий или углеро- дистая сталь

Выбор компенсатора

Компенсаторы выбираются в соответствии с диаметром трубопровода, на который они устанавливаются. Их количество (или расстояние между неподвижными опорами) определяется в зависимости от расчетного удлинения трубопровода и компенсирующей способности на сжатие, если компенсатор предварительно не растянут при монтаже.

В здании до 4-го этажа установка сильфонного компенсатора не требуется - тепловое расширение нивелируется за счет самокомпенсации.

Компенсация удлинения трубопровода для трех последних этажей не требуется ввиду малой длины участка.

Установка компенсаторов в зданиях выше 10 этажей является обязательной.

Расчет теплового удлине-

ния трубопровода

Расчет теплового удлинения трубопровода производится по формуле

$$
\Delta L=L \cdot N \cdot \Delta \vartheta \cdot \bar{\alpha} \cdot S \mathrm{MM}
$$

где ΔL — полное тепловое расширение;
L - высота этажа;
N - количество этажей;
$\Delta \vartheta$ - разность между рабочей температурой трубопровода и температурой окружающей среды при монтаже трубопровода; $\bar{\alpha}$ — средний коэффициент температурного расширения, (см. таблицу);
S - запас.

Материал	Коэффициент линейного температурного расши- рения а, мм/(м•C$)^{\circ}$
Углеродистая сталь оцинкованная	0,0117
Нержавеющая сталь аустенитная	0,017
Нержавеющая сталь ферритная	0,011
Чугун	0,0104
Медь	0,0165
Алюминий	0,0238
Латунь	0,0184
Бронза	0,0175

Максимальные параметры для расчета

Высота этажей (L): 3,3 м.
Температура монтажа: $-10^{\circ} \mathrm{C}$.
Температура эксплуатации: $+95^{\circ} \mathrm{C}$.
Запас (S): 5 \%.
Коэффициент линейного расширения стали $\bar{\alpha}$: $0,012 \mathrm{~mm} / \mathrm{m}$.

Пример подбора компенсатора для здания высотой 12 этажей

Участок труб до 4-го этажа самокомпенсируется за счет изгиба трубопровода.

Участок труб последних трех этажей не учитываем из-за малой длины участка.

Расчет требуемого хода сжатия компенсатора

$$
\begin{aligned}
& 3,3(\mathrm{~L}) \times 5(\mathrm{~N}) \times 105^{\circ} \mathrm{C}(\Delta 乌) \times 0,012 \mathrm{~mm} / \mathrm{m}(\bar{\alpha}) \times \\
& \times 1,05(\mathrm{~S})=21,85 \mathrm{~mm}
\end{aligned}
$$

Для компенсации теплового расширения трубопровода в 21,85 мм подойдет любой из приведенных ниже компенсаторов соответствующего диаметра.

Монтаж компенсатора

Даже при наличии внутренней направляющей гильзы, как правило, при монтаже требуется устанавливать направляющие скользящие опоры около компенсатора (или скользящую и неподвижную). Рекомендуется устанавливать их на расстоянии около $3 \times$ DN от компенсатора.
Для вертикальных стояков роль одной из опор может играть гильза в перекрытии.

1. Прогнать сплошной стояк с одновременной установкой неподвижных и направляющих опор в проектных точках.
2. Зафиксировать неподвижные опоры на трубопроводе.
3. Вырезать в проектных точках трубопровода участки стояка в соответствии с расчетной рекомендованной длиной с учетом предварительного растяжения компенсатора и ответных фланцев, если таковые применяются.

Не допускается запуск трубопровода, если длина участка врезки меньше паспортной длины компенсатора в свободном состоянии, т. е. когда компенсатор смонтирован в предварительно сжатом состоянии.
4. Перед монтажом компенсатора необходимо визуально проверить, что нет механических повреждений тонкостенного сильфона и защитного кожуха.
5. Проверяется, что компенсатор может беспрепятственно сжиматься и растягиваться в пределах заявленной компенсирующей способности.
6. К трубе присоединяется один конец компенсатора, затем второй конец растягивается до полной длины вырезанного участка трубы и крепится с противоположной стороны.

Центральный офис• 000 «Ридан»

Россия, 143581 Московская обл., г. Истра, дер. Лешково, 217.
Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 7008885 (регионы) •E-mail he@ridan.ru • ridan.ru
Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также куже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые марки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми марками компании «Ридан». Все права защищены.

