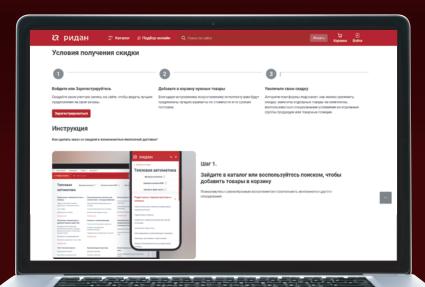

30 лет производим в России тепловую автоматику

Радиаторные терморегуляторы и балансировочные клапаны

Технический каталог. Октябрь 2025



Найдем продавца с лучшими ценами. В корзине будет отображена фактическая стоимость товаров без скрытых комиссий. Больше заказ — лучше скидка

Гарантируем своевременное выставление счета от дистрибьютора по вашему заказу. В случае отсутствия каких-либо позиций на складе, предложим варианты замены

Оперативно соберем и отправим заказ. Вам будет доступна вся информация о статусе и сроках доставки

Заказывайте по лучшей цене с бесплатной доставкой на ridan.ru

Радиаторные терморегуляторы и балансировочные клапаны

Каталог

- Термостатические элементы радиаторных терморегуляторов
- Клапаны радиаторных терморегуляторов
- Запорно-присоединительные радиаторные клапаны
- Автоматические балансировочные клапаны
- Ручные балансировочные клапаны

Настоящий каталог «Балансировочные клапаны» включает сведения об автоматических и ручных балансировочных клапанах, поставляемых компанией «Ридан» на российский рынок для трубопроводных систем инженерного обеспечения зданий (отопления, тепло- и холодоснабжения вентиляционных установок и кондиционеров, горячего и холодного водоснабжения и др.).

При переиздании были внесены изменения в номенклатуру балансировочных клапанов и термостатических клапанов, а также исправлены замеченные ошибки и опечатки.

В каталоге для каждого вида клапанов даны область применения, основные технические характеристики, номенклатура, заводские кодовые номера изделий для оформления заказов, данные для подбора, габаритные и присоединительные размеры.

Каталог предназначен для проектных, монтажно-наладочных и эксплуатационных организаций, а также для фирм, осуществляющих комплектацию оборудованием объектов строительства или торговые функции.

Замечания и предложения будут приняты с благодарностью. Просим направлять их по электронной почте: ruco1375@ridan.ru.

Содержание

Термостатические элементы серии TR 9000 Ultra	
Термостатические элементы серии TR 8000	
Термостатический элемент TR 62	
Клапан терморегулятора с предварительной настройкой TR-N	
Клапан терморегулятора с повышенной пропускной способностью TR-G	
Гарнитуры присоединительно-регулирующие TR-К	
Клапан запорный радиаторный LV	
Клапан запорно-присоединительный LV-КВ	
Автоматический балансировочный клапан АРТ-R3	39
Автоматический комбинированный балансировочный клапан APQT DN15–32	49
Автоматические комбинированные балансировочные клапаны AQT-R3 DN15–32	59
	71
Автоматический балансировочный клапан AQF-R DN65–200	75
Электрические приводы Ридан AME 110 NLXR и AME 110 MR	
Ручной балансировочный клапан MVT-R DN15–50	87
Ручной балансировочный клапан MNT-R DN15–50	95
Ручные балансировочные клапаны MNF-R2 фланцевые DN15–400 PN16,25	
Термостатический балансировочный клапан АНТ-R	115

Термостатические элементы серии TR 9000 Ultra

Описание и область применения

Термостатические элементы серии ТR 9000 Ultra — устройства автоматического регулирования температуры, предназначенные для комплектации радиаторных терморегуляторов Ридан TR-N и TR-G а так же Danfoss RA-N/G и RTR-N/G. Имеют присоединение M30x1,5 для термоэлемента TR 9001 Ultra, TR 9006 Ultra, TR 9015 Ultra и присоединение RTR/RA для TR 9000 Ultra и TR 9005 Ultra, совместимые с клапанами Ридан TR-G Российского производства, а так же Danfoss с присоединением RTR/RA.

Радиаторный терморегулятор представляет собой пропорциональный регулятор температуры воздуха прямого действия с малой зоной пропорциональности, которыми в настоящее время оснащаются системы отопления зданий различного назначения.

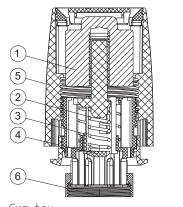
Терморегулятор ТR состоит из двух частей: универсального термостатического элемента серии TR 9000 Ultra и регулирующего клапана с предварительной настройкой пропускной способности TR-N (для двухтрубных систем отопления) или TR-G (для однотрубной системы).

Термостатические элементы серии ТR 9000 Ultra снабжены устройствами фиксирования и ограничения температурной настройки и защиты системы от замерзания.

Термостатические элементы TR 9005 Ultra и TR 9006 Ultra оснащены выносным датчиком с капиллярной трубкой длиной 2 м.

Термостатический элемент TR 9015 Ultra имеет диапазонон настройки температуры 15–28 °С и оснащен устройством ограничения температурной настройки.

Комплект TR 9501 Ultra состоит из термостатического элемента TR 9001 Ultra и антивандального кожуха. Имеет диапазон настройки температуры 6–28 °С, снабжен устройствами фиксирования и ограничения температурной настройки и защиты системы от замерзания.


Комплект TR 9515 Ultra состоит из термостатического элемента TR 9015 Ultra и антивандального кожуха. Имеет диапазон настройки температуры 15–28 °С, снабжен устройством фиксирования и ограничения температурной настройки и защиты системы от замерзания.

Номенклатура и кодовые номера для оформления заказа

Тип	Описание	Диапазон настройки температуры, °С	Кодовый номер
TR 9000 Ultra	Термостатический элемент со встроенным датчиком, присоединение RTR/RA	6–28	013G9000R
TR 9001 Ultra	Термостатический элемент со встроенным датчиком, присоединение M30x1,5	6–28	013G9001R
TR 9005 Ultra	Термостатический элемент с выносным датчиком, присоединение RTR/RA. Длина капиллярной трубки 2 м	6–28	013G9005R
TR 9006 Ultra	Термостатический элемент с выносным датчиком, присоединение M30x1,5. Длина капиллярной трубки 2 м	6–28	013G9006R
TR 9015 Ultra	Термостатический элемент со встроенным датчиком, присоединение M30x1,5	15–28	013G9015R
TR 9501 Ultra	Комплект из термостатического элемента со встроенным датчиком и защитного кожуха от несанкционированного вмешательства, присоединение M30x1,5	6–28	013G9501R
TR 9515 Ultra	Комплект из термостатического элемента со встроенным датчиком и защитного кожуха от несанкционированного вмешательства, присоединение M30x1,5	15–28	013G9515R

Устройство и принцип действия

(на примере TR 9001 Ultra)

- 1 Сильфон
- 2 Разгрузочная пружина
- 3 Настроечная пружина
- 4 Шток
- 5 Настроечная рукоятка со шкалой
- 6 Присоединительная гайка M30×1,5

Основное устройство термостатического элемента — сильфон, который обеспечивает пропорциональное регулирование. Датчик термоэлемента воспринимает изменение температуры окружающего воздуха. Сильфон и датчик заполнены специальной термочувствительной жидкостью.

Выверенное давление в сильфоне соответствует температуре его зарядки. Это давление сбалансировано силой сжатия настроечной пружины. При повышении температуры воздуха вокруг датчика жидкость расширяется, и давление в сильфоне растет. При этом сильфон увеличивается в объеме, перемещая золотник клапана в сторону закрытия отверстия для протока теплоносителя в отопительный прибор до тех пор, пока не будет достигнуто равновесие между усилием пружины и давлением жидкости.

При понижении температуры воздуха жидкость начинает сжиматься, и давление в сильфоне падает, что приводит к уменьшению его объема и перемещению золотника клапана в сторону открытия до положения, при котором вновь установится равновесие системы.

Для исключения влияния теплого воздуха от греющего патрубка отопительного прибора рекомендуется устанавливать термостатические элементы в горизонтальном положении.

Для уменьшения влияния температуры окружающего воздуха, например когда термоэлемент устанавливается за защитным экраном или плотными шторами, следует применять термоэлементы с выносным датчиком TR 9005 Ultra и TR 9006 Ultra.

Ограничение и блокировка настройки температуры

Термостатический элемент комплектуется фиксаторами настройки, которые по умолчанию установлены в крайних положениях на термоэлементе и позволяют настраивать его в диапазоне от «*» до «5».

Для ограничения настройки необходимо совместить прорезь в кольце с фиксатором

температуры. Вынуть фиксатор. Повернуть регулятор термоэлемента так, чтобы указатель оказался напротив требуемой настройки. Вставить фиксатор сбоку от указателя настройки по ходу вращения регулятора.

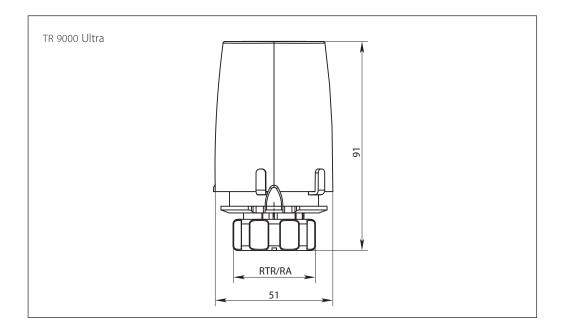
Метка на шкале	*	1	2	3	4	5
Настройка, °С	6	12	16	20	24	28

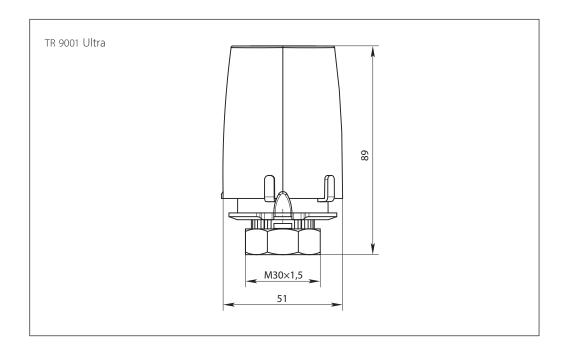
«*» - настройка защиты от замерзания

Фиксаторы настройки (входят в комплект поставки)

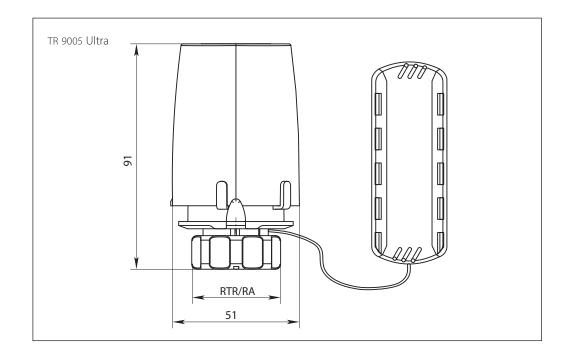
Защита от несанкционированного демонтажа

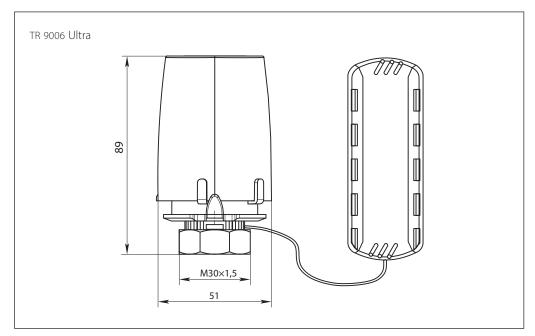
Для защиты термоэлементов моделей TR 9001 Ultra и TR 9015 Ultra от несанкционированного демонтажа и изменения температурных настроек используется кожух 013G5287R. Он входит в комплекты TR 9501 Ultra и TR 9515 Ultra.


Порядок установки защитного кожуха


1. Установите фиксаторы температуры с обеих сторон от указателя температурной настройки. Это обеспечит дополнительную защиту от изменения настроек.

- 2. Установите кожух 013G5287R поверх накидной гайки термоэлемента так, чтобы указатель температурной настройки оказался внутри специального паза в кожухе.
- 3. Зафиксируйте кожух на термоэлементе с помощью винта и гайки. Для затяжки используйте ключ HEX 2,5 мм.


Габаритные и присоединительные размеры



Габаритные и присоединительные размеры (продолжение)

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Термостатические элементы серии TR 8000

Описание и область применения

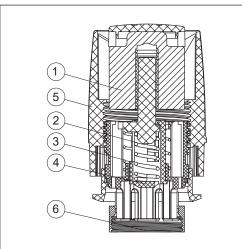
Термостатические элементы серии TR 8000 — устройства автоматического регулирования температуры, предназначенные для комплектации радиаторных терморегуляторов Ридан TR-N и TR-G, а так же Danfoss RA-N/G и RTR-N/G. Имеют присоединение M30x1,5 для термоэлемента TR 8001 и присоединение RTR/RA для TR 8000, совместимые с клапанами Ридан TR-G Российского производства, а так же Danfoss с присоединением RTR/RA.

Радиаторный терморегулятор представляет собой пропорциональный регулятор температуры воздуха прямого действия с малой зоной

пропорциональности, которыми в настоящее время оснащаются системы отопления зданий различного назначения.

Терморегулятор TR состоит из двух частей: универсального термостатического элемента серии TR 8000 и регулирующего клапана с предварительной настройкой пропускной способности TR-N (для двухтрубных систем отопления) или TR-G (для однотрубной системы).

Термостатические элементы серии TR 8000 снабжены функцией защиты системы от замерзания.


Номенклатура и кодовые номера для оформления заказа

Тип	Описание	Диапазон настройки температуры, °С	Кодовый номер
TR 8000	Термостатический элемент со встроенным датчиком, присоединение RTR/RA	6–28	013G8000R
TR 8001	Термостатический элемент со встроенным датчиком, присоединение M30x1,5	6–28	013G8001R

Устройство и принцип действия

(на примере TR 8001)

- 1 Сильфон
- 2 Разгрузочная пружина
- 3 Настроечная пружина
- 4 Шток
- 5 Настроечная рукоятка со шкалой
- 6 Присоединительная гайка M30×1,5

Основное устройство термостатического элемента — сильфон, который обеспечивает пропорциональное регулирование. Датчик термоэлемента воспринимает изменение температуры окружающего воздуха. Сильфон и датчик заполнены специальной термочувствительной жидкостью.

Выверенное давление в сильфоне соответствует температуре его зарядки. Это давление сбалансировано силой сжатия настроечной пружины. При повышении температуры воздуха вокруг датчика жидкость расширяется, и давление в сильфоне растет. При этом сильфон увеличивается в объеме, перемещая золотник клапана в сторону закрытия отверстия для протока теплоносителя в отопительный прибор до тех пор, пока не будет достигнуто равновесие между усилием пружины и давлением жидкости.

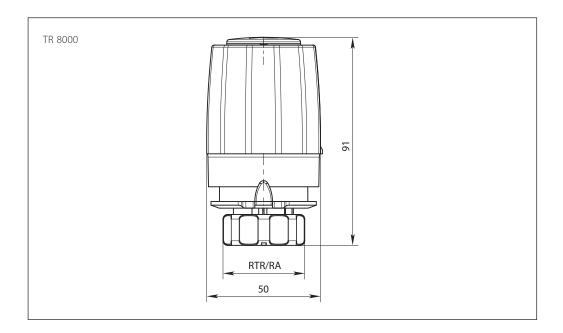
При понижении температуры воздуха жидкость начинает сжиматься, и давление в сильфоне падает, что приводит к уменьшению его объема и перемещению золотника клапана в сторону открытия до положения, при котором вновь установится равновесие системы.

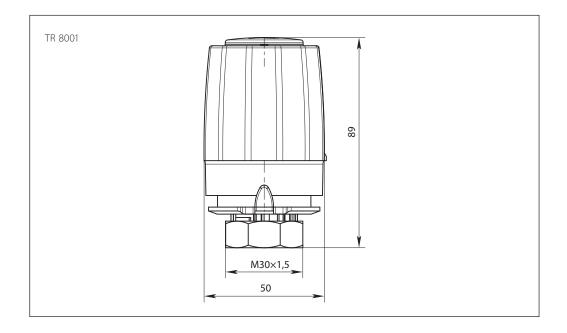
Для исключения влияния теплого воздуха от греющего патрубка отопительного прибора рекомендуется устанавливать термостатические элементы в горизонтальном положении.

Установка температуры

Термостатический элемент настраивается на требуемую комнатную температуру поворотом его рукоятки с нанесенной на нее цифровой шкалой.

Цифры на шкале соответствуют поддерживаемой регулятором температуре воздуха в помещении.


Температурные шкалы в соответствии с европейскими стандартами составлены при Xp = 2 °C. Это означает, что клапан терморегулятора закроется полностью, когда температура воздуха в помещении превысит температуру настройки по шкале термоэлемента на 2 °C.


Метка на шкале	*	1	2	3	4	5
Настройка, °С	6	12	16	20	24	28

«*» - настройка защиты от замерзания

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Термостатический элемент TR 62

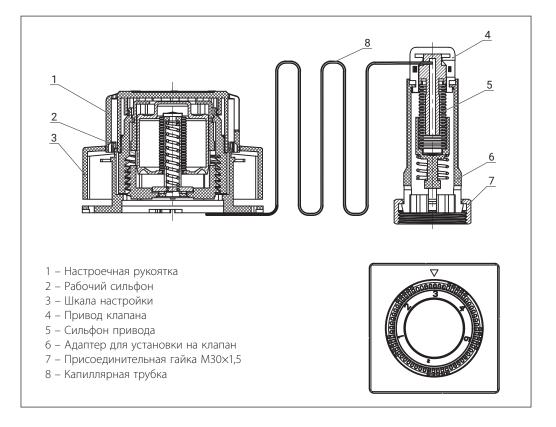
Описание и область применения

Термостатические элементы серии TR — устройства автоматического регулирования температуры, предназначенные для комплектации радиаторных терморегуляторов Ридан TR-N и TR-G.

Радиаторный терморегулятор представляет собой пропорциональный регулятор температуры воздуха прямого действия с малой зоной пропорциональности, которыми в настоящее время оснащаются системы отопления зданий различного назначения.

Терморегулятор TR состоит из двух частей: универсального термостатического элемента серии TR и регулирующего клапана с предварительной настройкой пропускной способности TR-N (для двухтрубных систем отопления) или TR-G (для однотрубной системы).

Термостатический элемент TR 62 имеет защиту системы отопления от замерзания.


Термостатический элемент TR 62 оснащен регулятором дистанционного управления с капиллярной трубкой длиной 2 м.

Номенклатура и кодовые номера для оформления заказа

Тип	Описание	Диапазон настройки температуры, °C	Кодовый номер
TR 62	Термостатический элемент дистанционного управления с капиллярной трубкой L = 2 м	7–28	013G7062R

Устройство и принцип действия

Основное устройство термостатического элемента — сильфон, который обеспечивает пропорциональное регулирование. Датчик термоэлемента воспринимает изменение температуры окружающего воздуха. Сильфон и датчик заполнены специальной термочувствительной жидкостью.

Выверенное давление в сильфоне соответствует температуре его зарядки. Это давление сбалансировано силой сжатия настроечной пружины. При повышении температуры воздуха вокруг датчика жидкость расширяется, и давление в сильфоне растет. При этом сильфон увеличивается в объеме, перемещая золотник клапана в сторону закрытия отверстия для протока теплоносителя в отопительный прибор до тех пор, пока не будет достигнуто

равновесие между усилием пружины и давлением жидкости.

При понижении температуры воздуха жидкость начинает сжиматься, и давление в сильфоне падает, что приводит к уменьшению его объема и перемещению золотника клапана в сторону открытия до положения, при котором вновь установится равновесие системы.

Для исключения влияния теплого воздуха от греющего патрубка отопительного прибора при применении термоэлемента со встроенным датчиком рекомендуется устанавливать термостатические элементы в горизонтальном положении. Если это невозможно, то необходимо применять термостатические элементы дистанционного управления или с выносным датчиком.

Установка температуры

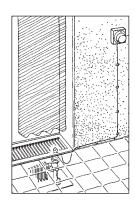
Термостатический элемент TR 62 настраивается на требуемую комнатную температуру поворотом регулировочной рукоятки с нанесенной на нее круговой шкалой.

Температурная шкала показывает взаимосвязь между обозначениями на ней и комнатной температурой.

Указанные величины температуры являются ориентировочными, так как фактическая

температура в помещении может отличаться от температуры воздуха вокруг термоэлемента и зависит от условий его размещения.

Температурные шкалы в соответствии с европейскими стандартами составлены при Xp = 2 °C. Это означает, что клапан терморегулятора закроется полностью, когда температура воздуха в помещении превысит температуру настройки по шкале термоэлемента на 2 °C.


Метка на шкале	*	1	2	3	4	5
Настройка, °С	7	12	16	20	24	28

«*» - настройка защиты от замерзания

Выбор типа термостатического элемента

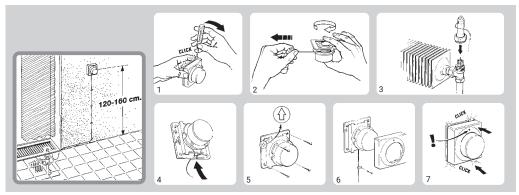
Термостатические элементы дистанционного управления используются в том случае, когда отопительные приборы и установленные на них клапаны терморегуляторов недоступны для пользователя, например закрыты несъемными декоративными панелями.

В этом случае датчик и узел настройки совмещены. Термостатические элементы дистанционного управления должны располагаться на высоте 1,2–1,6 м от пола или в другом доступном месте так, чтобы воздух помещения мог свободно циркулировать вокруг датчика.

Монтаж

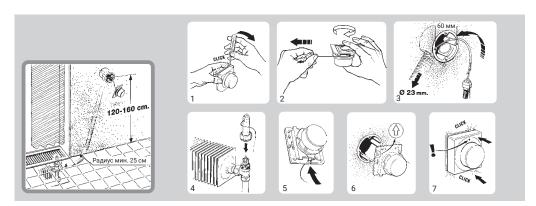
Монтаж, наладку и техническое обслуживание термостатического элемента TR 62 (далее термоэлемент) должен выполнять только квалифицированный персонал, имеющий допуск к работам такого рода.

Для предупреждения травматизма персонала и повреждения оборудования необходимо соблюдать требования инструкции производителя на установленное оборудование, а также инструкции по эксплуатации системы.


Распаковать термоэлемент из коробки, осмотреть на наличие повреждений, проверить вращение рукоятки. Рукоятка должна вращаться от одного крайнего положения к другому.

Термоэлемент устанавливается на клапан TR с креплением M30x1,5. Колпачок на клапане должен быть снят. Перед установкой следует повернуть рукоятку на максимальное значение.

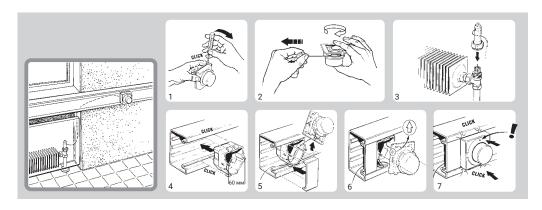
Капиллярная трубка дистанционного датчика поставляется целиком смотанной внутри его коробки. В процессе установки датчика трубку вытягивают из коробки на требуемую длину.

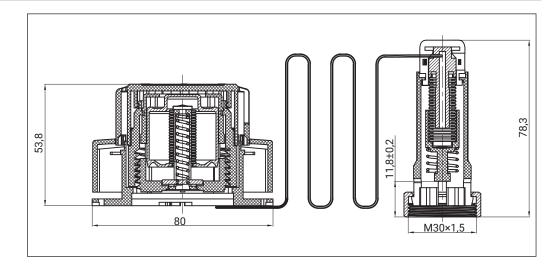

Возможны следующие варианты монтажа капиллярной трубки:

1. Открытый монтаж при помощи клипс.

2. Скрытый монтаж в штробе. Для этого заранее подготавливается штроба и устанавливается подрозетник диаметром 60 мм. Для механической защиты капиллярной трубки следует использовать гофрированную ПНД-трубу. В гофрированной ПНД-трубе делают продольный

надрез. Капиллярную трубку утапливают внутрь гофрированной трубы. Трубу укладывают в заранее подготовленную штробу, а дистанционный регулятор монтируют на подрозетник при помощи винтов.



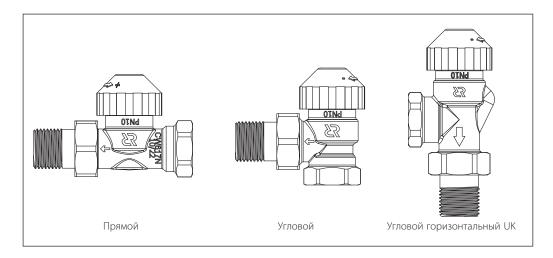

Монтаж (продолжение)

3. Скрытый монтаж в кабель-канале. Для этого заранее устанавливают кабель-канал и монтируют подрозетник размером 60 мм. Капиллярную трубку продевают в подрозетник и

укладывают внутри кабель-канала. Дистанционный регулятор монтируют на подрозетник при помощи винтов.

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»

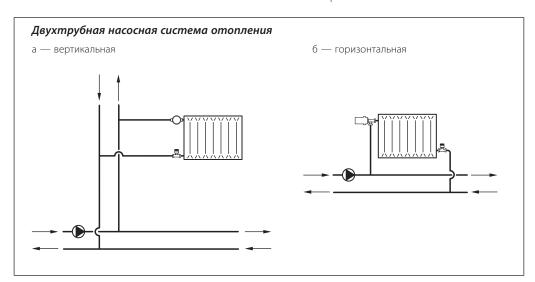

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Клапан терморегулятора с предварительной настройкой TR-N

Описание и область применения

Регулирующий клапан TR-N предназначен для применения в двухтрубных насосных системах водяного отопления.


TR-N оснащен встроенным устройством, для предварительной (монтажной) настройки его пропускной способности в рамках следующих диапазонов:

- $K_v = 0.09 0.4 \text{ м}^3/\text{ч}$ для клапанов DN15;
- $K_v = 0,11-0,43 \text{ м}^3/\text{ч}$ для клапанов DN20.

Клапан TR-N может сочетаться с термостатическими элементами серии Ридан Ultra.

Для идентификации клапанов TR-N их защитные колпачки окрашены в черный цвет. Защитный колпачок не должен использоваться для перекрытия потока теплоносителя через отопительный прибор. Для перекрытия потока следует применять сервисную латунную запорную рукоятку (кодовый номер 013G3300R).

Корпус клапана изготовлен из латуни с никелевым покрытием.

Для предотвращения отложений и коррозии клапаны терморегуляторов TR-N следует применять в системах водяного отопления, где теплоноситель отвечает требованиям Правил технической эксплуатации электрических станций

и сетей Российской Федерации. Не рекомендуется использовать для смазки деталей клапана составы, содержащие нефтепродукты (минеральные масла).

Номенклатура и кодовые номера для оформления заказа

_			штуцеров, оймы	Макс. пропускная	Пропускная способность при Хр 2C, K _V , м³/ч							Макс. темп. тепло-	Кодовый			
Тип	Исполнение	к трубо- проводу	наружн. R (к радиатору)	способность, К _{VS} , м³/ч	6	5	4	3	2	1	PN, бар	носителя, °С	номер			
	Угловой												013G7013R			
DNAS	Прямой			1/	1/	1,	0.75				0.05					013G7014R
DN 15	Угловой горизонталь- ный (UK)	1∕2	1/2	0,75	0,4	0,3	0,25	0,17	0,14	0,09	10	120	013G7048R			
DN 20	Угловой	3/.	3/.	0.95	0.42	0.21	0.27	0,19	0,16	6 0,11			013G7015R			
DN 20	20 Прямой	3/4	3/4	0,85	0,43	0,31	0,27						013G7016R			

Предварительная настройка

Настройка на расчетное значение производится легко и точно с помощью настроечного ключа (входит в комплект поставки клапана).

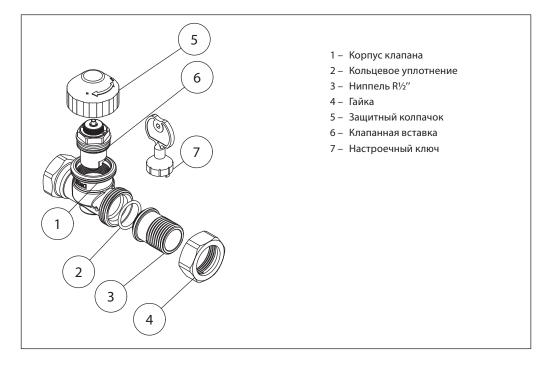
Для этого следует произвести следующие операции:

- снять защитный колпачок или термостатический элемент;
- вставить настроечный ключ в пазы клапанной вставки:
- повернуть ключ так, чтобы желаемое значение оказалось напротив установочной отметки «||» (заводская установка «6»);
- убрать настроечный ключ.

Предварительная настройка может производиться в диапазоне от «1» до «6» плавно. В положении «6» клапан полностью открыт.

Когда термостатический элемент смонтирован, то предварительная настройка оказывается спрятанной и таким образом защищенной от неавторизованного изменения.

Пример заказа радиаторного терморегулятора


Для отопительного прибора с подводками DN = 15 мм с боковым подключением к двухтрубному стояку выбираем клапан TR-N DN = 15 мм прямого исполнения (013G7014R) и термостатический элемент TR 9001 Ultra

с жидкостным встроенным температурным датчиком (013G9001R).

Выбор настройки клапана следует осуществлять на основании гидравлического расчета системы отопления.

Устройство

Радиаторный терморегулятор состоит из двух частей: универсального термостатического элемента серии ТR и регулирующего клапана с предварительной настройкой TR-N. Термостатический элемент и регулирующий клапан заказываются отдельно

Материалы, контактирующие с теплоносителем

Корпус клапана	Латунь CW617N
Кольцевое уплотнение	Этилен-пропиленовый каучук EPDM
Ниппель R½"	Латунь CW617N
Гайка	Латунь CW617N
Клапанная вставка	Латунь CW617N+ Пластик ABS

Пример определения настройки клапана TR-N

Требуется выбрать номер настройки клапана TR-N, установленного в двухтрубной системе водяного отопления при следующих условиях.

- Требуемая мощность радиатора: Q = 1,5 кВт.
- Перепад температур теплоносителя: $\Delta T = 20 \, ^{\circ} C$.
- Перепад давлений на клапане: $\Delta P = 0,1$ бар (10 кПа).

Решение

Расход теплоносителя через радиатор:

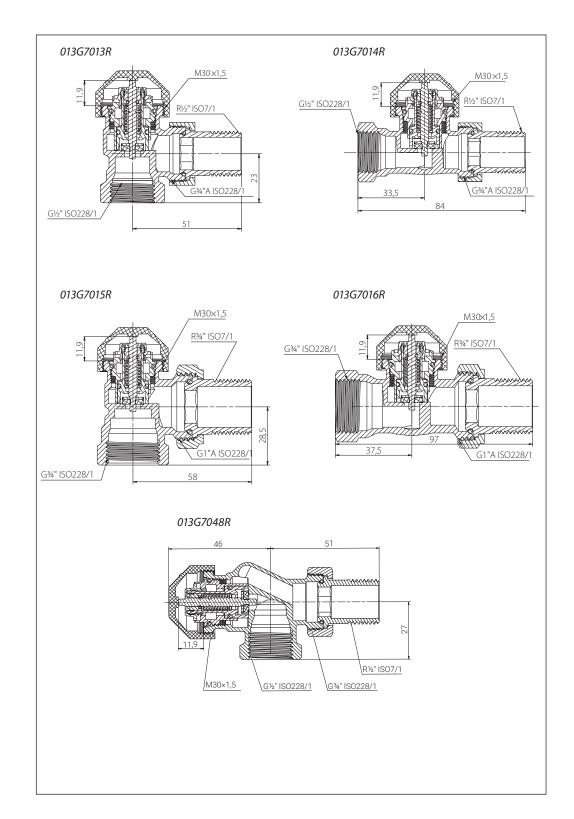
$$G = \frac{Q \cdot 860}{\Delta T} = \frac{1.5 \cdot 860}{20} = 64.5 \text{ KeV-4 (0.0645 M}^3/\text{-y}).$$

Требуемая пропускная способность клапана:

$$K_V = G/\sqrt{\Delta P}$$
, 6ap,

где G — расход в м³/ч;

 ΔP — перепад давлений на клапане, бар.

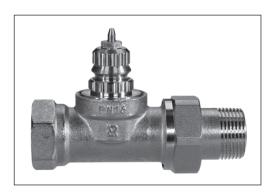

$$K_v = \frac{G}{\sqrt{\Delta P}} = \frac{0.0645}{\sqrt{0.1}} = 0.2 \text{ m}^3/4.$$

Если полученное значение находится между двумя значениями настройки в таблице, то выбирается наибольший.

В данном случае по расчету получается настройка 4 (K_V 0,25 $M^3/4$) на клапане TR-N DN15.

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»


Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217.

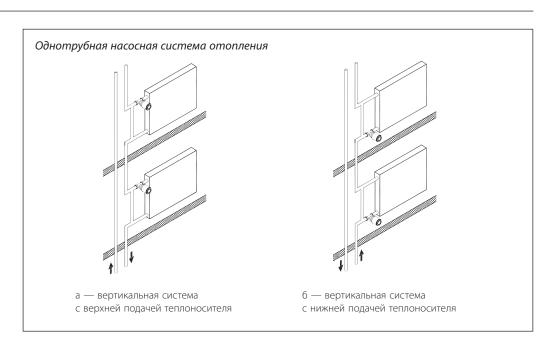
Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Клапан терморегулятора с повышенной пропускной способностью TR-G

Описание и область применения

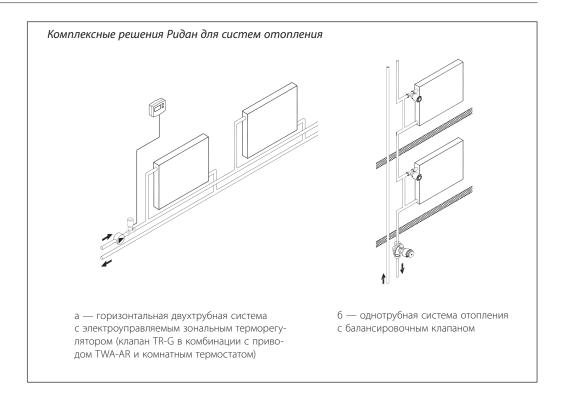
Клапан терморегулирующий с повышенной пропускной способностью TR-G предназначен для применения, как правило, в однотрубных системах водяного отопления с насосной циркуляцией теплоносителя, отвечающего требованиям Правил технической эксплуатации электрических станций и тепловых сетей

Российской Федерации. Клапан не рекомендуется использовать, если в теплоносителе присутствуют примеси минерального масла.


TR-G оснащен сальником, который может быть заменен без опорожнения системы отопления. Нажимной штифт в сальнике изготовлен из нержавеющей стали и не требует смазки в течение всего срока эксплуатации клапана.

Клапаны TR-G сочетаются с термостатическими элементами с присоединением RTR/RA, такими как TR 9000 Ultra, TR 9005 Ultra, TR 8000, TR 70, а так же термоэлектрическими приводами TWA-AR.

Клапаны TR-G поставляются с серыми (для их идентификации) защитными колпачками, которые не предназначены для регулирования или перекрытия потока теплоносителя. Для перекрытия должна применяться специальная латунная сервисная запорная рукоятка (кодовый номер 013G3300R).


23

Примеры применения

Примеры применения *(продолжение)*

Решение TR-G для однотрубной системы

- 1. В однотрубной системе отопления с терморегуляторами обязательно должен быть предусмотрен замыкающий участок между подающей и обратной подводками к радиатору (см. рис.). Диаметр замыкающего участка рекомендуется принимать на один типоразмер меньше диаметра подводок.
- 2. Диаметр клапана TR-G следует выбирать по диаметру подводок.

При выполнении вышеуказанных рекомендаций (пункты 1 и 2) расход теплоносителя через отопительный прибор будет не менее 25–30 % от расхода в стояке.

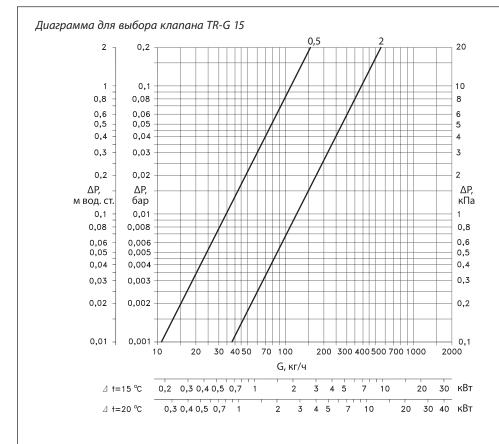
Номенклатура и кодовые номера для оформления заказа

Клапан TR-G

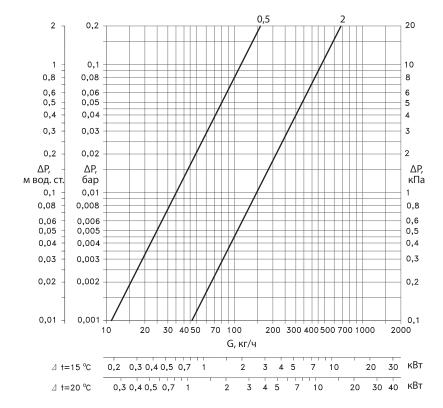
Тип	Исполне- ние	Резьба ш дюй	Пропускная способность клапана $K_v^{1)}$, м ³ /ч, при относительном диапазоне X_p в °C с термоэлементом (K_v^{1})			ном М давл давл т/э		акс. пение, бар	Предель- ный препад давления на	Макс. темп. теплоно-	Кодовый номер		
		внутр. R _р (к трубо- проводу)	наружн. R (к радиа- тору)	0,5	1,0	1,5	2,0	_	рабо- чее	испы- татель- ное	– клапане ²⁾ , бар	сителя, °С	
TR-G 15	Прямой	1/2	1/2	0,31	0,62	0,92	1,23	2,30	16	25	0.2	120	013G9024R
TR-G 20	Прямой	3/4	3/4	0,36	0,72	1,08	1,44	3,81	16	25	0,2	120	013G9026R

 $^{^{1)}}$ Значение K_v соответствует расходу теплоносителя G в $m^3/4$ при заданном подъеме золотника клапана и перепаде давления на клапане $\Delta P = 0.1$ бар, а значение K_{vs} — расходу через полностью открытый клапан (без термостатического элемента). $K_v = G/\sqrt{\Delta P}$.

Запасные детали и принадлежности


Изделие	Комплект	Кодовый номер
Сальник ¹⁾	10 шт.	013G0290R

¹⁾ Сальник можно заменить без опорожнения системы отопления.


²⁾ Клапан обеспечивает удовлетворительное регулирование при перепаде давления на нем ниже указанного значения.

Выбор клапана TR-G

Диаграмма для выбора клапана TR-G 20

Характеристики приведены для клапанов в комбинации с термостатическим элементом TR 9000 Ultra

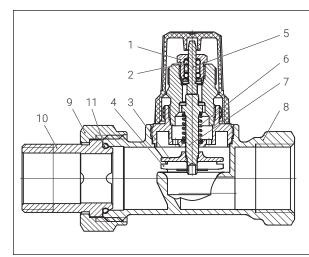
Выбор клапана TR-G *(продолжение)*

Пример выбора регулирующего клапана TR-G

Требуется подобрать диаметр регулирующего клапана для двухтрубной гравитационной системы отопления при следующих условиях:

- тепловая мощность отопительного прибора: Q = 2 кBT;
- перепад температур теплоносителя в системе отопления: $\Delta T = 20$ °C;
- требуемый перепад давления на клапане: $\Delta P = 0{,}004$ бар (0,4 кПа);
- расход теплоносителя через отопительный прибор:

$$G = \frac{Q \cdot 860}{\Delta T} = \frac{2 \cdot 860}{20} = 86 \text{ kg/y} (0,086 \text{ m}^3/\text{y}).$$


На приведенной номограмме выбирается клапан TR-G 20, который регулирует температуру при $X_0 = 2$ °C.

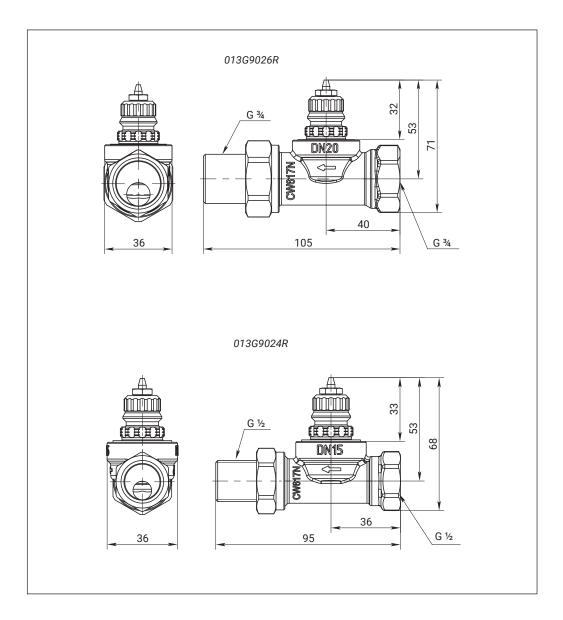
Также клапан и ${\rm X_p}$ можно взять из таблицы на стр. 25 по требуемой пропускной способности:

$$K_v = \frac{G}{\sqrt{\Delta P}} = \frac{0.086}{\sqrt{0.004}} = 1.36 \text{ m}^3/4,$$

что соответствует $\mathrm{K_v} = 1{,}44~\mathrm{m}^3/\mathrm{ч}$ клапана TR-G 20 при $\mathrm{X_p} = 2~\mathrm{^{\circ}C}.$

Устройство

Устройство терморегулятора


- 1 сальник;
- 2 кольцевое уплотнение;
- 3 тарелка клапана;
- 4 уплотнение тарелки;
- 5 нажимной штифт;
- 6 возвратная пружина;
- 7 шток клапана;
- 8 корпус клапана;
- 9 накидная гайка;
- 10 присоединительный ниппель
- 11 кольцевое уплотнение

Материалы, контактирующие с теплоносителем

Деталь	Материал			
Корпус клапана и прочие металлические детали	Латунь CW617N			
Кольцевые уплотнения	Этиленпропиленовый каучук EPDM			
Уплотнение тарелки	Этиленпропиленовый каучук 70 EPDM			
Нажимной штифт и пружина клапана	Нержавеющая сталь			

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»

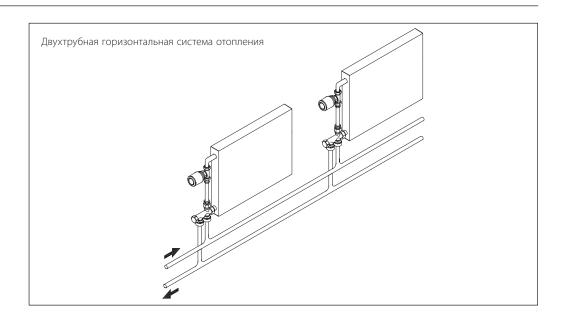
Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Гарнитуры присоединительно-регулирующие TR-K

Описание и область применения

Присоединительно-регулирующие гарнитуры TR-К предназначены для применения в двухтрубных насосных системах водяного отопления с подпольной прокладкой трубопроводов. TR-К отличаются простотой монтажа и современным дизайном.


Гарнитура ТR-К состоит из углового горизонтального термостатического клапана TR-N UK, соединительной трубки с уплотнительными фитингами и присоединительной детали LV-К. Регулирующий клапан гарнитуры снабжен устройством для предварительной (монтажной) настройки его пропускной способности.

Клапан TR-N UK присоединительно-регулирующих гарнитур TR-К можно комбинировать с любыми термостатическими элементами серии Ридан Ultra, а также с термостатическим приводом TWA-KR.

Резьбовое соединение M30х1,5 обеспечивает простое и точное крепление термоэлемента на клапане. Технические характеристики регулирующих клапанов гарнитур ТR-К в комбинации с термостатическими элементами серии Ридан Ultra соответствуют европейским нормам EN 215-1.

В целях предотвращения отложений и коррозии гарнитуры TR-К следует применять в системах водяного отопления, где теплоноситель отвечает требованиям Правил технической эксплуатации электрических станций и сетей Российской Федерации.

Пример применения

Номенклатура и кодовые номера для оформления заказа

Клапан TR-N UK

Тип	Исполнение	дю		штуцеров, Макс. ймы пропускная		Пропускная способность при Хр 2C, K _V , м ³ /ч						Макс. темп.	Кодовый
		к трубо- проводу	наружн. R (к радиатору)	способность, К _{VS} , м³/ч	6	5	4	3	2	1	PN, бар	теплоноси- теля, °C	номер
DN 15	Угловой горизонталь- ный (UK)	1/2	1/2	0,75	0,4	0,3	0,25	0,17	0,14	0,09	10	120	013G7048R

Присоединительная деталь

Эскиз	Описание	Кодовый номер
	Присоединительная деталь гарнитуры LV-К с запорным краном и патрубками с наружной резьбой G ¾ A ¹⁾	013G7041R

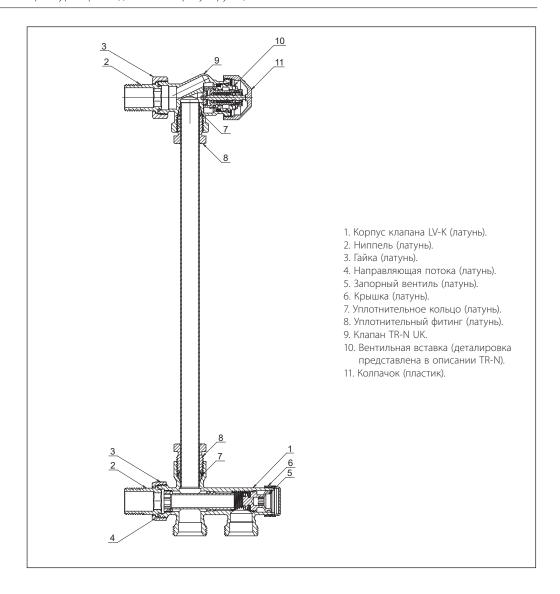
 $^{^{1)}}$ Поставляется без уплотнительных фитингов, которые заказываются отдельно.

Соединительная трубка

Эскиз	Описание	Кодовый номер
	Соединительная трубка длиной 1000 мм и диаметром 15 мм	013G3377R
	Соединительная трубка длиной 700 мм и диаметром 15 мм	013G3378R

Дополнительные принадлежности

Изделие	Комплект	Кодовый номер
Уплотнительный фитинг для соединительной трубки	1 шт.	013G4115R


Пример заказа гарнитуры с терморегулятором

Для отопительного прибора с боковыми присоединительными отверстиями с межосевым расстоянием 500 мм выбрать гарнитуру для подключения «в пол» к полимерным трубопроводам (например, PEX) диаметром 2×16 мм двухтрубной системы отопления.

Выбираем: клапан TR-N UK угловой горизонтальный; соединительную трубку длиной 700 мм (013G3378R); присоединительную деталь (013G7041R); 2 фитинга для соединения клапанов и трубки (013G4115R); термостатический элемент TR 9001 Ultra с жидкостным встроенным температурным датчиком (013G9001R).

Устройство TR-К с нижним подключением

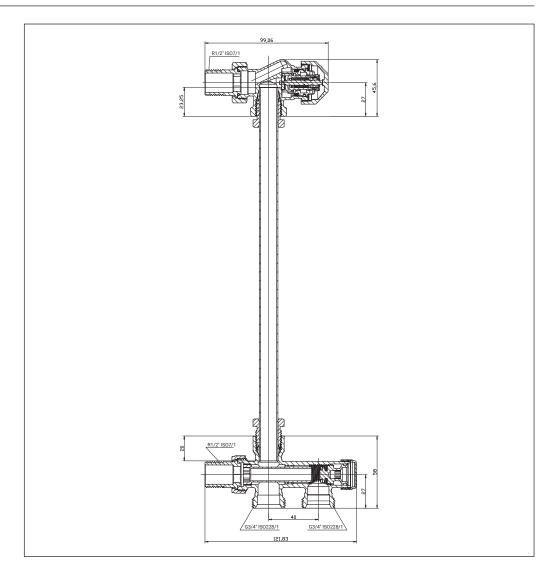
Предварительная настройка клапана TR-K

Настройка на расчетное значение производится легко и точно с помощью настроечного ключа (входит в комплект поставки клапана).

Для этого следует произвести следующие операции:


- снять защитный колпачок или термостатический элемент;
- вставить настроечный ключ в пазы клапанной вставки;
- повернуть ключ так, чтобы желаемое значение оказалось напротив установочной отметки «||» (заводская установка «б»);
- убрать настроечный ключ.

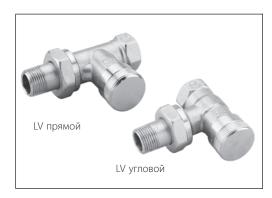
Предварительная настройка может производиться в диапазоне от «1» до «6» плавно. В положении «6» клапан полностью открыт.


Когда термостатический элемент смонтирован, то предварительная настройка оказывается спрятанной и таким образом защищенной от неавторизованного изменения.

Монтаж

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»


Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

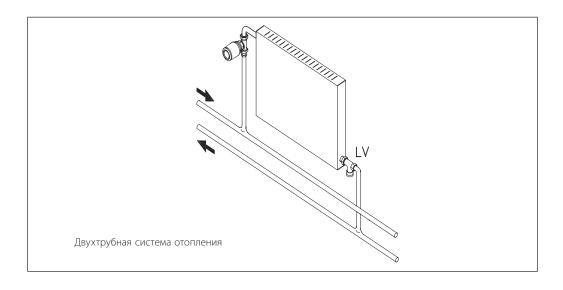
Клапан запорный радиаторный LV

Описание и область применения

Клапаны запорные LV применяются в двухтрубных насосных системах водяного отопления для отключения отдельного отопительного прибора для его демонтажа или технического обслуживания без опорожнения всей системы.

LV выпускаются в двух модификациях: прямой и угловой. Клапаны изготавливаются из чистой латуни с никелевым покрытием.

Пропускная способность клапанов LV в открытом положении:


- $K_{VS} = 2,5 \text{ м}^3/\text{ч}$ для клапана диаметром ½";
- $K_{VS} = 3,0 \text{ м}^3/\text{ч}$ для клапана диаметром 3/4".

Габаритные и присоединительные размеры LV соответствуют стандарту DIN 3842-1.

Клапан LV позволяет опорожнить отопительный прибор. Для этого необходимо снять крышку с LV и перекрыть клапан, а затем навернуть на него спускной кран. После установки кран можно открыть для слива воды поворотом влево квадратного штифта в его верхней части.

Для предотвращения отложений и коррозии клапаны LV следует применять в системах водяного отопления, где теплоноситель отвечает требованиям Правил технической эксплуатации электрических станций и сетей Российской Федерации.

Пример применения

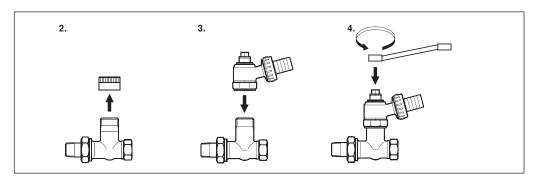
Номенклатура и кодовые номера для оформления заказа

Клапан LV


Типи	DN	Резьба шт дюй		Пропускная		авление, ар	Макс. темп. воды, °С	Vo-on v	
исполне- ние	DN, MM	внутр. R _p (к трубопро- воду)	наружн. R (к радиатору)	способность клапана К _{VS} , м ³ /ч	рабочее	испыта- тельное		Кодовый номер	
LV угловой	15	1/2	1/2	2.5				003L0143R	
LV прямой	15	//2	/2	2,5	10	16	120	003L0144R	
LV угловой	20	угловой 20	3/4	3/4	3.0	10	10	120	003L0145R
LV прямой	20	7/4	7/4	3,0				003L0146R	

Устройство

Устройство клапана LV

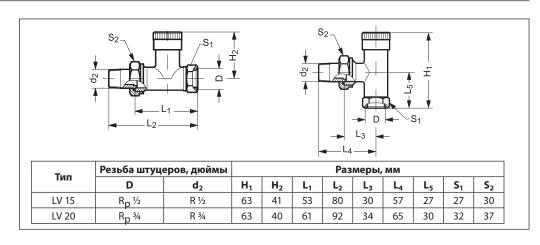

- 1 крышка;
- 2 направляющая втулка;
- 3 запорный конус;
- 4 корпус клапана;
- 5 соединительная гайка;
- 6 ниппель

Материалы, контактирующие с теплоносителем

Корпус клапана и прочие металлические детали	Латунь Ms 58
Кольцевые уплотнения	Бутадиенакрилонитрильный каучук

Монтаж

Клапан запорный LV


LV предназначен для монтажа в выходной пробке радиатора. Чтобы обеспечить слив воды из радиатора, необходимо установить запорный клапан крышкой вперед или вниз.

Спускной кран

Для монтажа спускного крана необходимо выполнить следующие операции:

- 1) перекрыть клапан терморегулятора на входе радиатора. Для предосторожности термостатический элемент необходимо заменить сервисной латунной запорной рукояткой (кодовый номер 013G3300R);
- 2) снять крышку LV и перекрыть клапан;
- 3) смонтировать спускной кран и надеть шланг на шланговую насадку;
- 4) для спуска воды открыть клапан гаечным ключом.

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

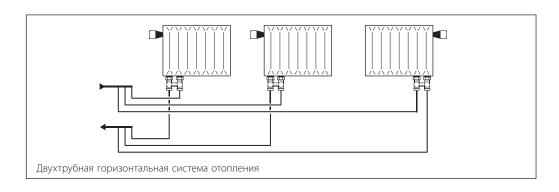
Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Техническое описание

Клапан запорно-присоединительный LV-KB

Описание и область применения

Клапан запорно-присоединительный LV-КВ применяется в двухтрубных системах отопления для подключения отопительных приборов с нижним расположением присоединительных штуцеров с межосевым расстоянием 50 мм. Клапан LV-КВ не подходит для присоединения к нему спускного крана.


С помощью LV-KB можно отключить отопительный прибор для его демонтажа или технического обслуживания без опорожнения всей системы отопления.

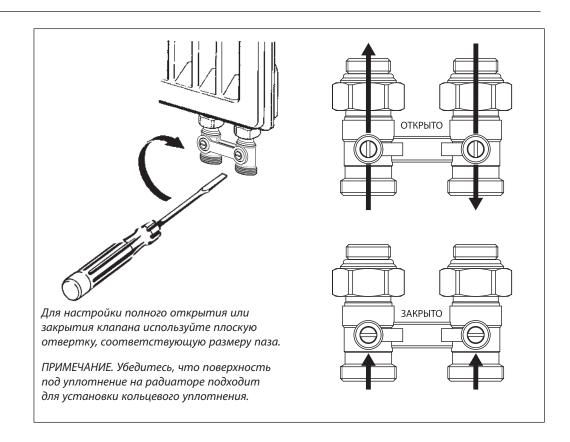
Клапан LV-КВ выполнен из латуни с никелевым покрытием и выпускается в двух версиях: прямой и угловой. Он может быть непосредственно присоединен к радиаторам, имеющим штуцеры с внешней резьбой G ¾.

Для штуцеров с внутренней резьбой G ½ необходимо использовать специальный переходник. К LV-КВ с помощью отдельно заказываемых компрессионных фитингов можно присоединять медные, полимерные и металлополимерные трубы. Момент затяжки накидной гайки присоединительного фитинга не должен превышать 30 Нм.

В целях предотвращения отложений и коррозии клапаны LV-КВ следует применять в системах водяного отопления. При этом теплоноситель должен отвечать требованиям Правил технической эксплуатации электрических станций и сетей Российской Федерации.

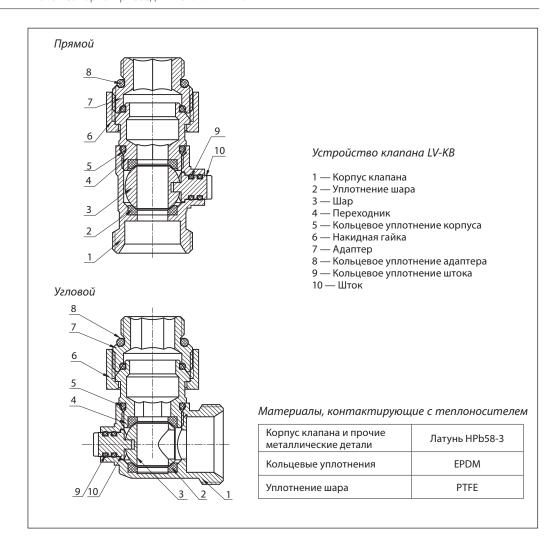
Пример применения

Номенклатура и кодовые номера для оформления заказа

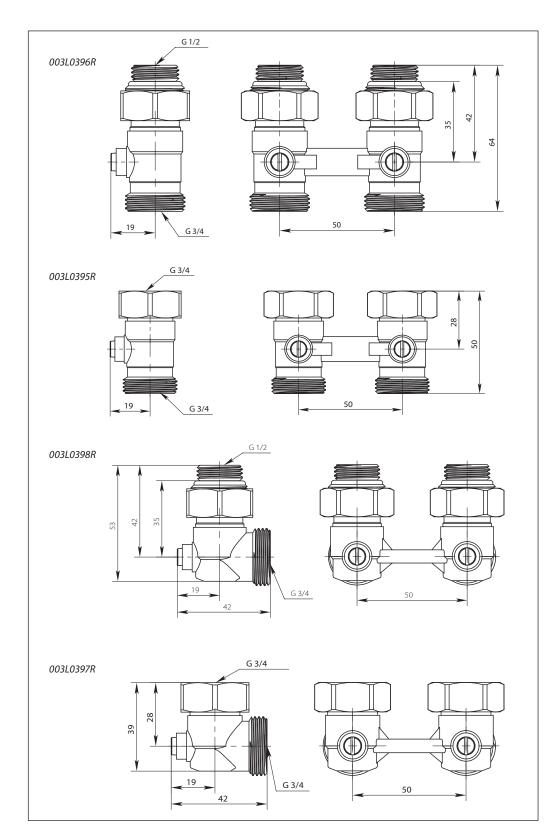

Клапан LV-КВ

Типи	Резьба штуцеров, дюймы		Пропускная Макс. давление, б		тение, бар	бар Макс.	Varanuŭ
исполнение	к радиатору	к трубопров.	способность К _{vs} , м³/ч	рабочее	испыта- тельное	темп. воды, °С	Кодовый номер
LV-KB угловой	Наружная	Наружная G ¾ A	4.4	10	16	120	003L0398R
LV-КВ прямой	G ½ A						003L0396R
LV-KB угловой	Внутренняя		G 3/4 A	G 3/4 A 4,4	10	16	120
LV-КВ прямой	G 3/4						003L0395R

Дополнительные принадлежности


Эскиз	Описание	Кодовый номер
8	Самоуплотняющийся соединительный переходник для штуцеров радиатора с внутренней резьбой G ½	003L0299R

Регулировка



Устройство

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

RC.HE.03.06

Техническое описание

Автоматический балансировочный клапан APT-R3

Описание и область применения

Балансировочные клапаны APT-R3 используются для гидравлической балансировки систем отопления и охлаждения с переменным расходом. При частичных нагрузках, когда регулирующие клапаны снижают расход, перепад давления поддерживается постоянным, и, таким образом, обеспечивается нужный расход в любой момент времени. Такая балансировка системы обеспечивает энергосбережение, повышает комфорт и управляемость климатической системы.

Стабильная работа регулирующих клапанов и пониженный уровень шума

Поддержание постоянным перепада давления на каждом участке системы обеспечивает требуемые авторитеты регулирующих и термостатических клапанов, что отражается в более точном регулировании температуры. Ограничение перепада давления в пределах допустимой величины для различных устройств, например для радиаторных терморегуляторов, исключает шумообразование при их работе.

Более простая наладка системы

При применение автоматических балансировочных клапанов устраняется влияние настройки одного балансировочного клапана на настройку остальных клапанов. Таким образом определение настройки автоматических балансировочных клапанов не требует сложных расчетных методов или трудоемкой рекурсивной пусконаладки.

Установка клапанов АРТ-R3 позволяет разделить трубопроводную систему на независимые участки и осуществить их поэтапный пуск в эксплуатацию. Также можно легко изменить конфигурацию системы без проведения гидравлической увязки старой и новой ее частей.

Ограничение расхода

При использование автоматического балансировочного клапана APT-R3 совместно с ручным балансировочным клапаном-партнером обеспечивается ограничение расхода на потребителе. Такое ограничение расхода исключает недостаточное поступление энергоносителя к удаленным потребителям и его перерасход у ближайших, а также позволяет оптимизировать работу циркуляционных насосов.

Функции

Балансировочные клапаны серии APT-R3 совместно с клапанами-партнерами выполняют следующие функции:

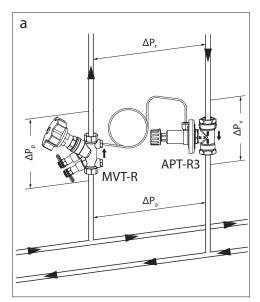
- поддержание перепада давления;
- ограничение максимального расхода;
- перекрытие трубопровода;
- дренаж тепло- или холодоносителя;
- обеспечивают возможность измерения расхода, перепада давления, располагаемого напора и температуры с помощью специальных приборов.

APT-R3 может быть настроен на поддержание требуемого перепада давления в диапазоне от 5 до 25 кПа и от 20 до 40 кПа.

Балансировочные клапаны серии APT-R3 гарантируют высокое качество регулирования благодаря наличию:

- разгруженного по давлению конуса золотника;
- мембран, разработанных для каждого размера клапана;
- настроечной пружины с линейной характеристикой на требуемый перепад давления.

Описание и область применения (продолжение)


Угол 90° между всеми сервисными устройствами (запорной рукояткой, дренажным краном, измерительными ниппелями) обеспечивает легкий доступ к ним в любых монтажных условиях. Компактная конструкция клапанов АРТ-R3 позволяет устанавливать их в стесненных условиях.

Клапаны APT-R3 поставляются с внутренней резьбой. Автоматические балансировочные клапаны APT-R3 применяются совместно с

балансировочными клапанами MVT-R. С помощью клапана MVT-R можно ограничить расход среды через ветвь системы в пределах расчетной величины за счет фиксации его пропускной способности. Клапаны APT-R3 должны устанавливаться на обратном трубопроводе (стояке), а клапаны MVT-R, при совместном применении с клапанами APT-R3, должны устанавливаться на подающем трубопроводе.

Примеры применения

Существует две схемы подключения импульсной трубки к клапану-партнеру.

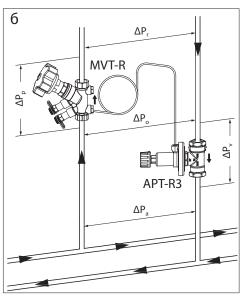


Рис. 1. Схемы подключения импульсной трубки к клапану-партнеру. а — настройка на APT-R3 принимается равной Δ Pr — сопротивлению стояка. Клапан партнер находится вне зоны регулирования; б — настройка на APT-R3 принимается равной Δ Po — сопротивлению стояка и клапана партнера. Клапан партнер находится в зоне регулирования

Клапан-партнер не входит в участок системы (рис. 1, а), на котором поддерживается требуемый перепад давления, т.е. сопротивление клапана-партнера не учитывается в настройке регулятора APT-R3. Применяется в том случае, когда ограничение расчетного расхода возможно на других устройства внутри регулируемого участка (например, на балансировочных клапанах, установленных на отводах этажного коллектора при использовании клапанов APT-R3 и MVT-R на вводе этого узла). Для данного решения вместе с регуляторами APT-R3 следует использовать клапаны MVT-R (импульсная трубка должна быть подключена во второй штуцер клапана MVT-R по ходу движения энергоносителя).

Клапан-партнер входит в участок системы (рис. 1, б), на котором поддерживается требуемый перепад давления, т. е. сопротивление клапана-партнера учитывается в настройке

регулятора APT-R3. Применяется при необходимости ограничения максимального расхода на потребителе (например, при установке на квартирном узле регулирования, когда существует риск замены отопительных приборов жильцом). В этом случае с клапанами APT-R3 следует применять клапаны MVT-R (импульсная трубка должна быть подключена в первый штуцер клапана MVT-R по ходу движения энергоносителя).

Клапаны АРТ-R3 применяются в системах отопления для поддержания постоянного перепада давления на стояках (рис. 2) или горизонтальных ветках (рис. 3). Для ограничения расхода через отдельные радиаторы клапаны термостатических регуляторов должны быть оснащены устройством предварительной настройки, и на стояке должен поддерживаться постоянный перепад давления.

Примеры применения *(продолжение)*

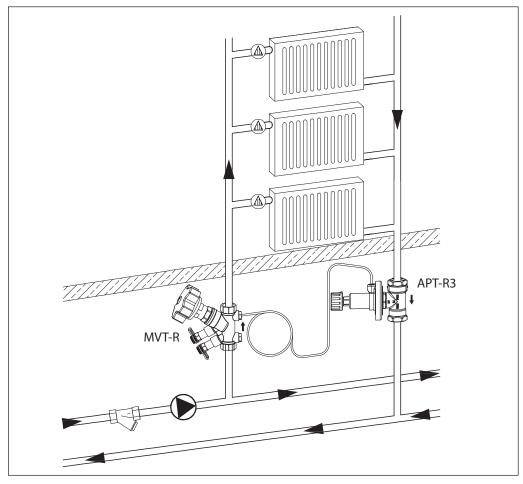


Рис. 2. Клапаны APT-R3 + MVT-R на вертикальном стояке системы отопления

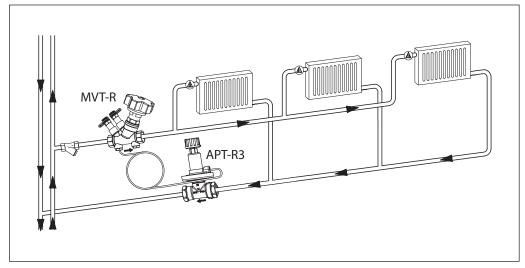


Рис. 3. Клапаны APT-R3 + MVT-R на горизонтальной ветке системы отопления

Номенклатура и кодовые номера для заказа

Балансировочный клапан APT-R3 в комплекте с импульсной трубкой 1,2 м

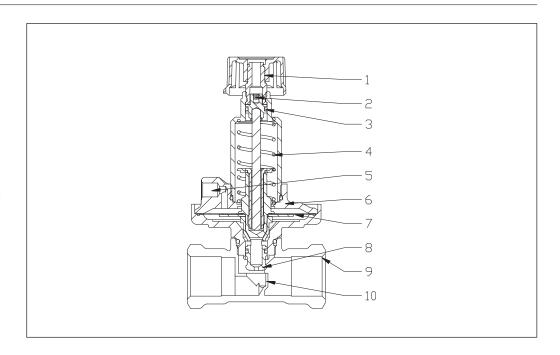
Эскиз	DN	Пропускная способность K _{vs} , м ³ /ч	Размер внутр. резьбы ISO 228/1, дюймы	Диапазон настройки ΔР, кПа	Кодовый номер
anna anna	15	1,6	G ½		003Z5701R3
	20	2,5	G 3/4		003Z5702R3
	25	4,0	G 1	5–25	003Z5703R3
RISTA	32	6,3	G 1¼		003Z5704R3
Br. TA	40	10,0	G 1½		003Z5705R3
TOTAL	15	1,6	G ½		003Z5741R3
	20	2,5	G 3/4		003Z5742R3
	25	4,0	G 1	20-40	003Z5743R3
	32	6,3	G 1¼		003Z5744R3
	40	10,0	G 1½		003Z5745R3

Балансировочный клапан MVT-R

Эскиз	DN	Пропускная способность К _{vs} , м ³ /ч	Размер внутр. резьбы по ISO 7/1, дюймы	Кодовый номер
	15 LF	2,54	Rp ½	003Z4040R
	15	4,81	Rp ½	003Z4041R
	20	5,19	Rp ¾	003Z4042R
	25	8,03	Rp 1	003Z4043R
	32	14,11	Rp 1 1/4	003Z4044R
	40	19,27	Rp 1 ½	003Z4045R
	50	28,00	Rp 2	003Z4046R

Дополнительные принадлежности

Эскиз	Описание	Размер	Кодовый номер
	Импульсная трубка 1,2 м с кольцевыми уплотнениями	G 1/16 A	003L8152R3
	Адаптер для подключения импульсной трубки в отверстия G ¼		162L2667


Технические характеристики

Тип	APT-R3	MVT-R
Номинальный диаметр, DN	15-40	15–50
Макс. рабочее давление	PN16	PN16
Испытательное давление, бар	25	25
Рекомендуемый перепад давления на клапане, бар	0,1–1,5 (10–150 кПа)	0,1–1,5 (10–150 кПа)
Протечка при перекрытии	Нет видимой протечки ISO 5208	Нет видимой протечки ISO 5208
Рабочая температура, °С	0–120	0–120
Температура транспортировки и хранения, °С	-40-70	-40-70
Материалы контактирующие с водой		
Корпус клапана	Латунь	DZR-латунь
Конус клапана	Латунь	DZR-латунь
Мембрана и уплотнения	EPDM	EPDM
Пружина	Нержавеющая сталь	_

Устройство клапана APT-R3

- 1. Запорный механизм;
- 2. Шпиндель настройки перепада давления;
- 3. Кольцевые уплотнения;
- 4. Настроечная пружина;
- 5. Штуцер для импульсной трубки;
- 6. Мембранный блок;
- 7. Регулирующая мембрана;
- 8. Разгруженный по давлению конус клапана;
- 9. Корпус клапана;
- 10. Седло клапана.

Настройка клапана APT-R3

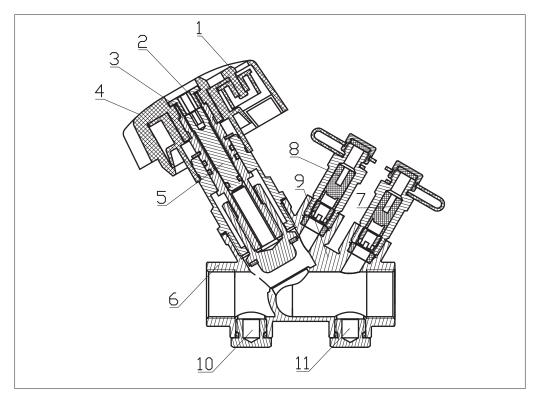
Клапан АРТ-R3 разработан специально для поддержания постоянного перепада давления, на который ои настраивается в процессе наладки системы. Положительное давление от подающего трубопровода системы передается по импульсной трубке, присоединенной к штуцеру (5), в пространство над мембраной (7).

Отрицательное давление передается в пространство под мембраной от входного патрубка клапана (от обратного трубопровода системы) через отверстие в конусе клапана АРТ-R3 (8). Разность этих двух давлений уравновешивается рабочей пружиной клапана АРТ-R3 (4). Клапан АРТ-R3 настраивается на поддержание требуемого перепада давления путем изменения усилия сжатия пружины. Настройка производится вращением настроечного шпинделя (2), сжимающего пружину. Один полный оборот шпинделя изменяет давление настройки на 0,01 бар (1 кПа).

Вращение шпинделя по часовой стрелке увеличивает регулируемую разность давления, а вращение против часовой стрелки — уменьшает. Если текущая настройка клапана APT-R3 неизвестна, то следует сначала полностью завернуть шпиндель по часовой стрелке. При этом положении шпинделя клапан APT-R3 будет настроен на 0,25 бар (25 кПа) либо на 0,4 бар (40 кПа). Затем шпиндель необходимо отвернуть на п оборотов для достижения требуемой настройки.

Примечание. После 20 оборотов шпиндель высвобождается. Чтобы вернуть шпиндель в рабочее положение, следует закручивать его шестигранником. При этом на шестигранник следует надавливать до тех пор, пока шпиндель снова не «сядет» на резьбу.

Кол-во	APT-R3 5-25	APT-R3 20-40		
оборотов шпинделя	Настройка, кПа			
0	25	40		
1	24	39		
2	23	38		
3	22	37		
4	21	36		
5	20	35		
6	19	34		
7	18	33		
8	17	32		
9	16	31		
10	15	30		
11	14	29		
12	13	28		
13	12	27		
14	11	26		
15	10	25		
16	9	24		
17	8	23		
18	7	22		
19	6	21		
20	5	20		


Шестигранный штифтовой ключ

,	,	
	DN клапана	Размер, мм
	15	2,5
	20	3
	25	4
	32	5
	40	5

Устройство клапана MVT-R

- 1. Настроечная рукоятка.
- 2. Винт фиксации рукоятки.
- 3. Винт блокировки настройки.
- 4. Окно индикации значения настройки.
- 5. Шток клапана.
- 6. Корпус клапана.
- 7. Измерительный ниппель после седла (синий).
- 8. Измерительный ниппель до седла (красный).
- 9. Блок измерительных ниппелей.
- Отверстие для подключения импульсной трубки (клапан не входит в регулируемый участок).
- Отверстие для подключения импульсной трубки (клапан входит в регулируемый участок).

В качестве клапана-партнера для APT-R3 рекомендуется использовать ручной балансировочный клапан MVT-R.

MVT-R помимо основной функции настройки требуемой пропускной способности имеет ряд дополнительных особенностей:

- простая настройка и блокировка настройки;
- полное перекрытие потока;
- съемная и заменяемая настроечная рукоятка;
- два измерительных ниппеля игольчатого
- два отверстия для дренажа и/или подключения импульсной трубки;
- материал клапана DZR-латунь.

Подключение импульсной трубки

Импульсная трубка регулятора перепада давления АРТ-R3 должна быть подключена к присоединительному штуцеру 10 или 11 (см. Устройство клапана MVT-R). Допустимы два варианта использования MVT-R в качестве клапана-партнера: когда он находится вне регулируемого участка с постоянным перепадом давления (импульсная трубка подключена к штуцеру 10), либо включен в него (импульсная трубка подключена к штуцеру 11). Различие обусловлено позицией подключения импульсной трубки и соответственно точкой отбора импульса давления.

• Клапан-партнер вне регулируемого участка (импульсная трубка подключена к штуцеру 10):

Настройка клапана MVT-R в данной ситуации должна быть выставлена в максимально открытое положение. Доступна функция измерения расхода.

• Клапан-партнер входит в регулируемый участок (импульсная трубка подключена к штуцеру 11):

Доступны функции измерения и ограничения расхода.

Ограничение расхода

Если импульсная трубка подключена к штуцеру 11 клапана MVT-R, клапан APT-R3 совместно с клапаном MVT-R также выполняют функцию ограничения расхода. Расход при этом не может быть выше:

$$G_{max} = K v_{MVT-R} \sqrt{rac{dPH}{100}}$$
, где

 G_{max} — максимально-возможный расход, м³/ч; Kv_{MVT-R} — значение настроенной пропускной способности MVT-R, м³/(ч·бар $^{-1}$);

 ${\rm dP_H}$ — значение перепада, поддерживаемого APT-R3, кПа.

Измерение расхода

Расход можно измерить через ниппели клапана MVT-R при помощи прибора T650 или аналогичного.

Для сохранения точности измерения рекомендуется принимать минимальные потери на клапане MVT-R не менее 3 кПа.

Выбор диаметра клапана APT-R3

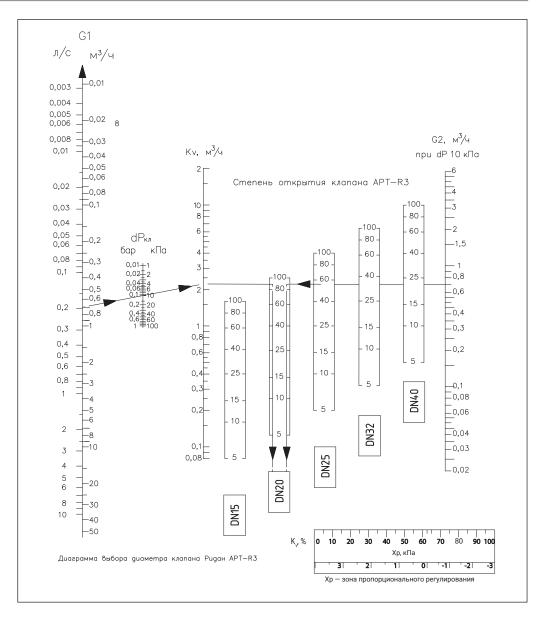


Диаграмма позволяет подобрать клапаны APT-R3 при различном перепаде давления. Для подбора клапана проведите прямую линию от левой шкалы расхода G1 до шкалы пропускной способности Кv, через значение потерь давления на клапане dP_{кл}. Далее проведите горизонтальную линию до пересечения с колонками, показывающими степень открытия клапанов различных диаметров. Выбираем клапан с наибольшей степенью открытия.

При подборе клапана APT-R3 при перепаде давления на нем 10 кПа можно воспользоваться упрощенным способом. Для этого необходимо провести горизонтальную линию от значения расхода клапана, указанного на правой шкале расхода G2. Выбираем клапан с наибольшей степенью открытия.

Пример

Дано

Расход 0,7 м³/ч.

Перепад давления на клапане 10 кПа.

Решение

Находим на левой шкале расхода G1 значение 0,7 м³/ч, проводим прямую линию через значение 10 кПа на оси перепада давления на клапане dРкл до пересечения с осью Кv. Далее проводим горизонтальную линию. Выбираем диаметр клапана с наибольшей степенью открытия – DN20.

Так как требуемый перепад на клапане равен 10 кПа можем также воспользоваться упрощенным подбором. Находим на правой шкале расхода G2 значение 7 м³/ч и проводим горизонтальную линию. Выбираем диаметр клапана с наибольшей степенью открытия – DN20.

Выбор диаметра и настройки клапана MVT-R

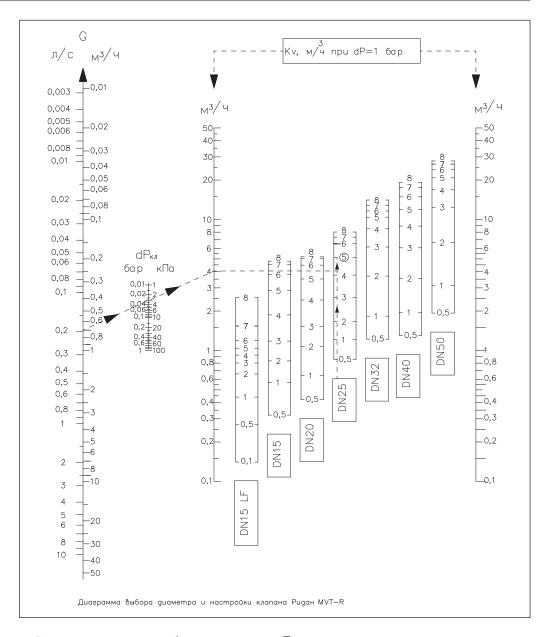


Диаграмма позволяет подобрать клапаны MVT-R и их настройки при различном перепаде давления. Для подбора клапана проведите прямую линию от левой шкалы расхода G до шкалы пропускной способности Ку, через значение потерь давления на клапане dP_{кл}. Далее проводим горизонтальную линию до пересечения с колонками, показывающими настройку клапанов различных диаметров. При подборе по диаграмме следует выбрать настройку, находящуюся выше горизонтальной линии. При необходимости подбора настройки с точностью до 0,1 ее значения рекомендуется воспользоваться настроечными таблицами (см. техническое описание MVT-R).

Пример

Необходимо подобрать клапан-партнер для APT-R3.

Дано

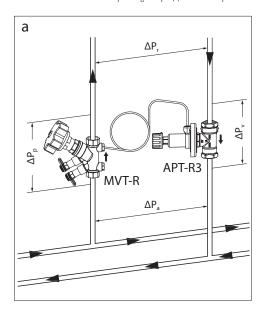
Расход 0,7 м³/ч. Диаметр трубопровода 25 мм.

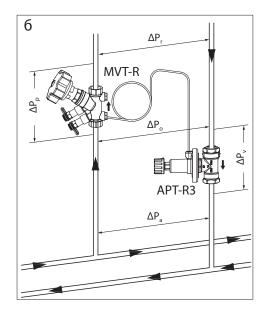
Решение

Для обеспечения точности измерений принимаем перепад давления на клапане-партнере 3 кПа.

Находим на левой шкале расхода G1 значение $0.7~{\rm M}^3/{\rm H}$, проводим прямую линию через значение $3~{\rm K}\Pi$ а на оси перепада давления на клапане ${\rm dP_{KЛ}}$ до пересечения с осью Kv. Далее проводим горизонтальную линию до колонки DN25. Выбираем настройку клапана DN25, указанную выше горизонтальной линии. Настройка – N5.

Пример подбора APT-R3 + MVT-R


Данс


Расход $G = 0.7 \text{ м}^3/4$.

Потери давления на потребители $\Delta P_r = 15$ кПа.

Диаметр трубопровода 25 мм.

Располагаемый напор ΔP_a определяется расчетом.

Решение

Так как требуемый располагаемый напор не задан и его необходимо определить, начинаем подбор с клапана APT-R3.

Минимальные потери давления на клапане APT-R3 должны быть не менее 10 кПа для сохранения качества поддержания перепада давления. Принимаем $\Delta P_{\rm v}=10$ кПа.

Минимальные потери давления на клапане MVT-R должны быть не менее 3 кПа для сохранения точности измерения. Принимаем $\Delta P_p = 3$ кПа.

По диаграмме осуществляем подбор диаметра клапана APT-R3. Выбираем APT-R3 DN20.

По диаграмме осуществляем подбор диаметра клапана MVT-R и его настройку, выбираем DN25 N5.

Определяем требуемый располагаемый напор:

$$\Delta P_a = \Delta P_p + \Delta P_r + \Delta P_v = 3 + 15 + 10 = 23 \text{ k} \Pi a.$$

Определим настройку регулятора перепада для двух вариантов подключения импульсной трубки.

Первый вариант (рис а). Клапан MVT-R не входит в регулируемый участок. Требуемая величина поддерживаемого давления при этом будет равна потерям давления на потребителе:

$$\Delta P_r = 15$$
 κΠα.

Настройка APT-R3 при этом будет 10 оборотов.

Второй вариант (рис 6). Клапан MVT-R входит в регулируемый участок. Требуемая величина поддерживаемого давления при этом будет равна потерям давления на потребителе и потерям на клапане-партнере:

$$\Delta P_{o} = \Delta P_{r} + \Delta P_{p} = 15 + 3 = 18 \text{ k}\Pi a.$$

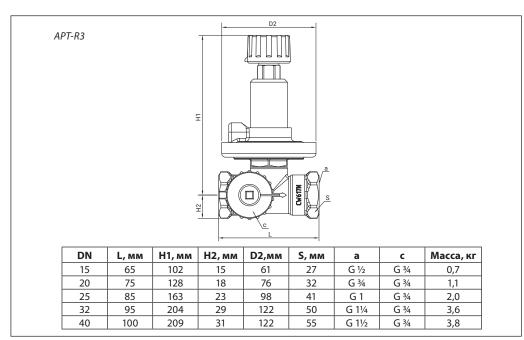
Настройка APT-R3 при этом будет 7 оборотов.

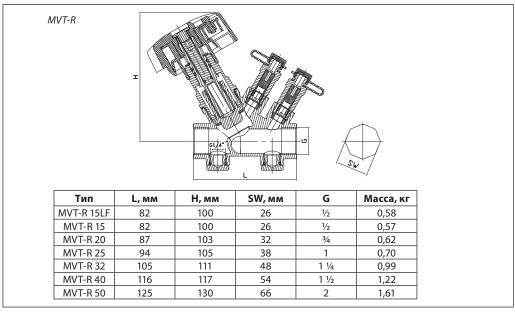
Монтаж

Клапан APT-R3 должен быть установлен на обратном трубопроводе системы отопления так, чтобы направление движения теплоносителя совпадало с направлением стрелки, нанесенной на корпус клапана. Импульсная трубка

должна быть подключена к клапану партнеру (MVT-R), установленному на подающем трубопроводе. Импульсная трубка должна быть промыта перед подключением к клапану APT-R3.

Гидравлические испытания


Трубопроводная система с балансировочными клапанами испытывается при давлении воды не более 25 бар.


Перед гидравлическими испытаниями необходимо обеспечить одинаковое статическое давление по обе стороны мембраны APT-R3. Для этого должны быть установлены импульсные трубки между APT-R3 и MVT-R. В противном случае клапаны могут выйти из строя.

Если клапан MVT-R не входит в регулируемый участок, то при заполнении системы оба клапана (APT-R3 и MVT-R) должны быть одновременно открыты или закрыты.

Если клапан MVT-R входит в регулируемый участок, то оба клапана (APT-R3 и MVT-R) должны быть открыты. Дополнительные подробности по заполнению и опрессовке см. в Инструкции для регуляторов APT-R3.

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Техническое описание

Автоматический комбинированный балансировочный клапан APQT DN15-32

Описание и область применения

Комбинированный автоматический балансировочный клапан APQT имеет компактный корпус и выполняет три функции:

- 1) регулятор перепада давления,
- 2) ограничитель расхода,
- 3) регулирующий клапан с линейной характеристикой регулирования.

Преимущества

- Надежная система отопления, обеспечивающая:
 - правильное распределение тепла даже при частичных нагрузках;
- бесшумную работу благодаря стабильно низкому перепаду давления ΔP на термостатических радиаторных клапанах даже в системе, где требуется более высокий напор насоса.
- Снижение затрат на отопление.
- Более эффективное регулирование температуры в помещении.
- Быстрый и простой монтаж благодаря компактным размерам клапана.

Номенклатура и кодовые номера для заказа

Клапан **APQT** (включая импульсную трубку длиной 1.2 м с адаптером ¼"–¼«")

олиной 1,2 м с абаптером ½ –½ ₁₆)					
Эскиз	DN, mm	Размер наружной резьбы по ISO 228/1	Кодовый номер		
	15	G 3/4 A	003Z1402R		
	15 (HP)	G % A	003Z1412R		
	20	G 1 A	003Z1403R		
	20 (HP)		003Z1413R		
	25	G 1¼ A	003Z1404R		
	25 (HP)		003Z1414R		
	32	G 11/4 A	003Z1405R		
	32 (HP)	G 1½ A	003Z1415R		

Термоэлектрический привод

Тип	Напряжение питания, В пер. тока	Длина кабеля, м	Кодовый номер
TWA OR HS	24	1.2	082F1602R
TWA-QR H3	230	1,2	082F1600R
TWA-QR	24	1.2	082F1603R
HO ¹⁾	230	1,2	082F1601R

 $^{^{1)}}$ TWA-QR HO подходит только для диаметров 15 и 20 мм.

Автоматический комбинированный балансировочный клапан APQT DN15-32

Номенклатура и кодовые номера для заказа

(продолжение)

Дополнительные принадлежности

Наимено- вание	Присоедини- тельная резьба	DN, mm	Кодовый номер
Резьбовой присоеди- нительный фитинг (1 шт.)	R 1/2	15	003Z0282R
	R ¾	20	003Z0283R
	R 1	25	003Z0284R
(т шт.)	R 1¼	32	003Z0285R

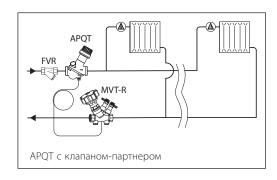
Запасные детали

Тип	Замечание	Кодовый номер
Адаптер импульс- ной трубки, мм	¼"(нар.) – ¼6"(вн.)	162L2667
Импульсная трубка с уплотнительными кольцами	L = 1,2 м	003L8152R3
Запорная рукоятка (латунная)		013G3300R

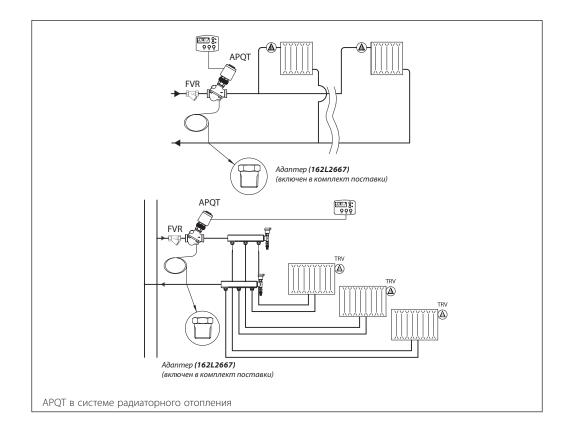
Технические характеристики

Номинальный	й диаметр DN	15	15 (HP)	20	20 (HP)	25	25 (HP)	32	32 (HP)		
Q _{ном.} (при нас	тройке 100 %), л/ч	30	00	60	00	12	00	23	00		
Макс. регулир кПа	оуемый перепад давлений,	22	35	22	35	22	35	22	35		
Макс. перепа, кПа	д давления на клапане ΔP_a ,				40	00					
Мин. перепад кПа	ц давления на клапане ΔР _а ,	20	28	20	28	20	28	20	28		
Условное дав	ление PN, бар	16 (PN 16)									
Характеристи	ика регулирующих клапанов				Лине	йная					
Температура				-10.	120						
Ход штока ре		2,	25		4,5						
Соодинонно	наружная резьба ISO 228/1			G ¾A G 1A G 1¼A							
Соединение	привод	M 30×1,5									
Материалы, н	контактирующие с водой										
Корпус клапа	на	Латунь, стойкая к вымыванию цинка (CW 602N)									
Мембрана и у	плотнительное кольцо	EPDM									
Пружина				Не	ержавею	щая ста	ль				
Конус (регуля	тора перепада давления)			He	ержавею	щая ста	ль				
Седло (регуля	ятора перепада давления)				EPI	OM					
Конус (регули	рующего клапана)				Лат	унь					
Седло (регулі	ирующего клапана)		Латунь,	стойкая	я к вымы	ванию ц	цинка (C\	V 602N)			
Винт				Нержавеющая сталь							
Герметик	- ерметик			Эфир диметакрилата							
Материалы, н	Материалы, не контактирующие с водой			ŭ							
Пластмассовь	Пластмассовые детали				Поли	амид					
Наружные ви	Наружные винты			Нержавеющая сталь							

Монтаж

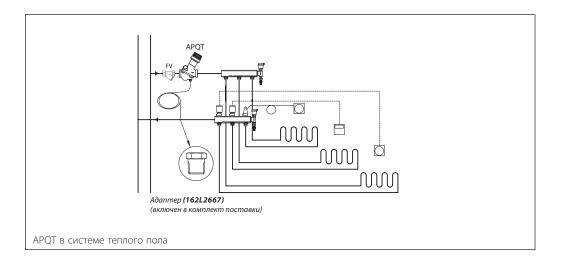

При установке клапана APQT направление стрелки на его корпусе должно совпадать с направлением движения теплоносителя. Импульсная трубка должна быть установлена между клапаном и адаптером $\frac{1}{4}$ "– $\frac{1}{16}$ ", который поставляется в комплекте с клапаном APQT.

В качестве альтернативы импульсная трубка может быть подсоединена к клапану-партнеру MVT-R. При этом доступны функции измерения расхода и перекрытия потока.


Примечание. Перед запуском импульсная трубка должна быть заполнена водой.

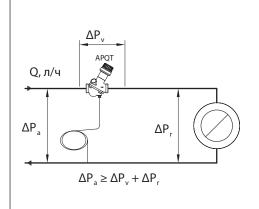
Клапан APQT разработан для применения в двухтрубных системах отопления жилых зданий с поквартирной разводкой. Он может использоваться как в системах радиаторного отопления, так и в системах теплых полов.

Высоконапорное исполнение клапана APQT HP подходит для больших систем напольного отопления, где требуется более высокий перепад давления ΔP .



АРОТ обеспечивает необходимый гидравлический баланс системы даже при неполной нагрузке, а также быстро и легко ограничивает максимальный расход в квартирной ветви. При подключении к клапану двухпозиционного термоэлектропривода возможно программируемое зонное управление квартирной системой, например: ночное отключение или снижение расхода.

Монтаж (продолжение)


Выбор типоразмера

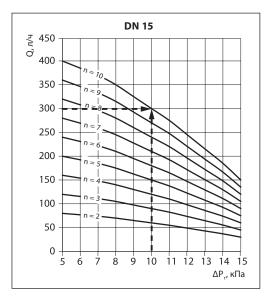
Выбор типоразмера клапана APQT зависит от расчетного расхода теплоносителя Q и требуемого для работы системы перепада давления ΔP_r . Максимальные значения расхода указаны в таблице.

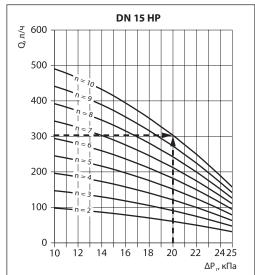
Если требуются другие значения Q и ΔP_r , типоразмер и настройки клапана APQT можно

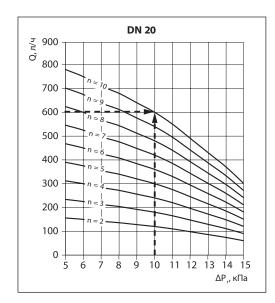
определить на основе приведенных ниже номограмм или таблиц. Значение Q пропорционально заданному диаметру клапана APQT, а верхнее предельное значение перепада давления ΔP_r остается таким же.

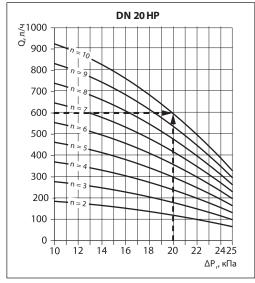
DN при настройке 10 %	1	5	15 ((HP)	2	0	20 (HP)	2	5	25 (HP)	3	2	32 ((HP)
Q _{макс.} , л/ч	300	400	300	490	600	780	600	920	1200	1600	1200	1750	2300	2700	2300	3350
Макс. перепад давления, доступный при макс. расходе, кПа	10	5	20	10	10	5	20	10	10	5	20	10	10	5	20	10
Макс. регулируемый перепад давления при отсутствии расхода, кПа	2	2	3	5	2	2	3	5	2	2	3	5	2	2	3	5
Мин. перепад давления ΔP_a , кПа	2	.0	2	8	2	0	2	8	2	0	2	8	2	0	2	8

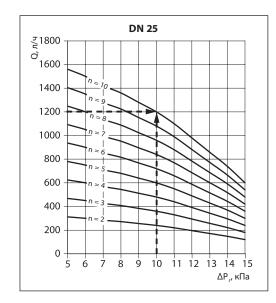
Q – расчетный расход в системе;

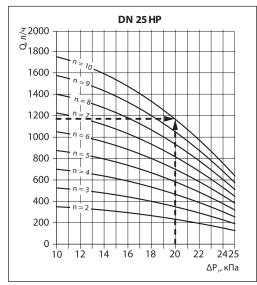

ΔP, – требуемый (проектный) перепад давления для системы;


ΔP_ν – требуемый (проектный) перепад давления на клапане APQT;


ΔР_а – минимально-необходимый перепад давления перед квартирной системой для обеспечения правильной работы клапана APQT

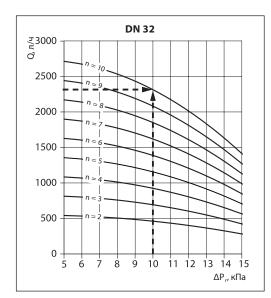


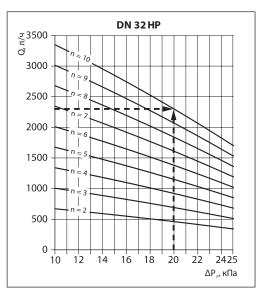

Выбор типоразмера (продолжение)



Выбор типоразмера *(продолжение)*

Пример


Дано:


Расчетный расход теплоносителя на систему радиаторного отопления: Q = 420 л/ч.

Падение давления в системе при расчетном расходе теплоносителя: $\Delta P_r = 10 \ \text{к} \Pi \text{a}.$

Решение:

Выбираем клапан APQT DN 20. Установленный на N = 7 (= 420/600) клапан APQT будет поддерживать перепад давления на уровне 10 кПа, когда будет достигнут расчетный расход. При любых нагрузках, в том числе при нулевой нагрузке, он будет поддерживать его ниже 22 кПа, одновременно ограничивая подачу в систему радиаторов до 420 л/ч.

Настройки клапана APQT DN 15

AD :://a	Расход Q, л/ч, при настройке клапана											
ΔР,, кПа	2	3	4	5	6	7	8	9	10			
5	80	120	160	200	240	280	320	360	400			
6	77	116	154	193	231	270	308	347	385			
7	74	111	148	185	222	259	296	333	370			
8	70	105	140	175	210	245	280	315	350			
9	65	98	130	163	195	228	260	293	325			
10	60	90	120	150	180	210	240	270	300			
Q _{макс.} при ΔT = 20 °C									7,0 кВт			
13	43	65	86	108	129	151	172	194	215			
14	37	56	74	93	111	130	148	167	185			
15	30	45	60	75	90	105	120	135	150			

Настройки клапана APQT DN 15 HP

ΔDΠο			Pac	ход Q, л/	ч, при на	стройке н	клапана		
ΔР _г , кПа	2	3	4	5	6	7	8	9	10
10	100	145	195	245	295	345	390	440	490
15	85	125	165	210	250	290	330	375	415
16	80	120	160	200	235	275	315	355	395
17	75	115	150	190	225	265	300	340	375
18	70	105	140	175	210	245	280	315	350
19	65	100	130	165	195	225	260	295	325
20	60	90	120	150	180	210	240	270	300
Q _{макс.} при ΔT = 20 °C									7,0 кВт
21	55	85	110	140	165	195	220	250	275
22	50	75	100	125	150	175	200	225	250
23	45	65	90	110	130	155	175	200	220
24	40	55	75	95	115	135	150	170	190
25	30	50	65	80	95	110	130	145	160

Выбор типоразмера *(продолжение)*

Настройки клапана APQT DN 20

AD	Расход Q, л/ч, при настройке клапана												
ΔР _r , кПа	2	3	4	5	6	7	8	9	10				
5	155	235	310	390	470	545	625	700	780				
6	150	225	300	375	450	525	600	675	750				
7	140	215	285	355	425	495	570	640	710				
8	135	205	270	340	410	475	545	610	680				
9	130	190	255	320	385	450	510	575	640				
10	120	180	240	300	360	420	480	540	600				
Q _{макс.} при ΔT = 20 °C									13,9 кВт				
13	85	130	170	215	260	300	345	385	430				
14	75	110	150	185	220	260	295	335	370				
15	60	90	120	150	180	210	240	270	300				

Настройки клапана APQT DN 20 HP

AD			Pac	ход Q, л/ч	ч, при нас	тройке к	лапана		
ΔP _r , κΠa	2	3	4	5	6	7	8	9	10
10	185	275	370	460	550	645	735	830	920
15	160	235	315	395	475	555	630	710	790
16	150	225	300	380	455	530	605	680	755
17	145	215	290	360	430	505	575	650	720
18	135	205	270	340	410	475	545	610	680
19	130	190	255	320	385	450	510	575	640
20	120	180	240	300	360	420	480	540	600
Q _{макс.} при ΔT = 20 °C									13,9 кВт
21	110	165	220	275	325	380	435	490	545
22	100	150	200	250	295	345	395	445	495
23	90	130	175	220	265	310	350	395	440
24	75	115	155	195	230	270	310	345	385
25	65	100	130	165	195	224	260	295	325

Настройки клапана APQT DN 25

AD			Pac	ход Q, л/ч	ч, при нас	тройке к	лапана		
ΔР _г , кПа	2	3	4	5	6	7	8	9	10
5	310	470	625	780	935	1090	1250	1405	1560
6	300	450	600	750	900	1050	1200	1350	1500
7	285	425	570	710	850	995	1135	1280	1420
8	270	410	545	680	815	950	1090	1225	1360
9	255	385	510	640	770	895	1025	1150	1280
10	240	360	480	600	720	840	960	1080	1200
Q _{макс.} при ΔT = 20 °C									27,9 кВт
13	170	260	345	430	515	600	690	775	860
14	150	220	295	370	445	520	590	665	740
15	120	180	240	300	360	420	480	540	600

Выбор типоразмера *(продолжение)*

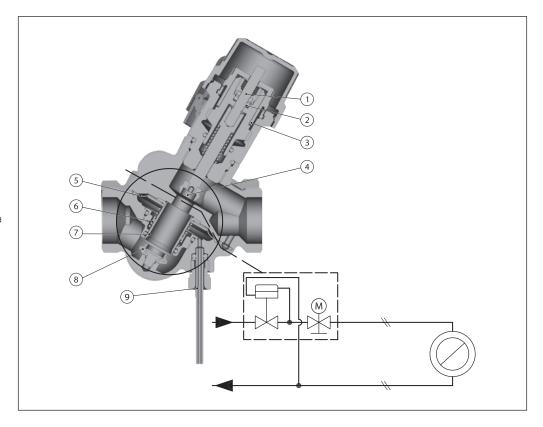
Настройки клапана APQT DN 25 HP

AD #50			Pac	ход Q, л/	ч, при на	стройке н	клапана		
ΔР _r , кПа	2	3	4	5	6	7	8	9	10
10	350	525	700	875	1050	1225	1400	1575	1750
15	305	460	615	770	920	1075	1230	1380	1535
16	295	445	590	740	885	1035	1180	1330	1475
17	280	420	560	705	845	985	1125	1265	1405
18	265	400	530	665	800	930	1065	1195	1330
19	250	375	500	625	750	875	1000	1125	1250
20	240	360	480	600	720	840	960	1080	1200
Q _{макс.} при ΔT = 20 °C									27,9 кВт
21	215	320	430	535	640	750	855	965	1070
22	195	290	390	485	580	680	775	875	970
23	175	260	345	435	520	605	690	780	865
24	150	225	300	380	455	530	605	680	755
25	130	190	255	320	385	450	510	575	640

Настройки клапана APQT DN 32

AD			Pac	ход Q, л/	ч, при на	стройке н	клапана		
ΔP _r , κΠa	2	3	4	5	6	7	8	9	10
5	540	810	1080	1350	1620	1890	2160	2430	2700
6	530	800	1065	1330	1595	1860	2130	2395	2660
7	520	780	1040	1300	1560	1820	2080	2340	2600
8	505	755	1010	1260	1510	1765	2015	2270	2520
9	485	725	970	1210	1450	1695	1935	2180	2420
10	460	690	920	1150	1380	1610	1840	2070	2300
Q _{макс.} при ΔT = 20 °C									51,2 кВт
11	430	650	865	1080	1295	1510	1730	1945	2160
12	400	600	800	1000	1200	1400	1600	1800	2000
13	365	545	730	910	1090	1275	1455	1640	1820
14	325	485	650	810	970	1135	1295	1460	1620
15	280	420	560	700	840	980	1120	1260	1400

Настройки клапана APQT DN 32 HP

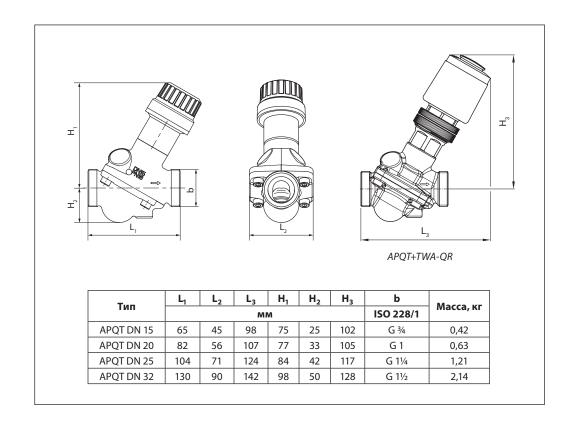

AD			Pac	ход Q, л/	ч, при на	стройке н	клапана		
ΔР _г , кПа	2	3	4	5	6	7	8	9	10
10	670	1005	1340	1675	2010	2345	2680	3015	3350
11	650	975	1300	1625	1950	2275	2600	2925	3250
12	630	945	1260	1575	1890	2205	2520	2835	3150
13	610	915	1220	1525	1830	2135	2440	2745	3050
14	590	885	1180	1480	1775	2070	2365	2660	2955
15	570	855	1140	1425	1710	1995	2280	2565	2850
16	550	825	1100	1370	1645	1920	2195	2470	2744
17	525	790	1055	1320	1580	1845	2110	2370	2635
18	525	790	1050	1315	1575	1835	2100	2365	2625
19	485	725	965	1210	1450	1690	1930	2175	2415
20	460	690	920	1150	1380	1610	1840	2070	2300
Q _{макс.} при ΔT = 20 °C									51,2 кВт
21	435	655	875	1095	1310	1530	1750	1965	2185
22	415	620	825	1035	1240	1445	1650	1860	2065
23	390	585	780	975	1170	1365	1560	1755	1950
24	365	550	730	915	1095	1280	1460	1645	1825
25	340	510	680	850	1020	1190	1360	1530	1700

Устройство

Клапан APQT DN = 15-32 мм.

- 1. Шток регулирующего клапана.
- 2. Сальниковое уплотнение.
- 3. Настроечная шкала.
- 4. Конус регулирующего клапана.
- 5. Мембрана.
- 6. Рабочая пружина.
- 7. Цилиндр регулятора перепада давлений.
- 8. Седло регулятора перепада давления.
- 9. Импульсная трубка.

APOT — автоматический комбинированный балансировочный клапан. Он функционирует как регулятор перепада давления, ограничитель расхода и клапан зонального управления. Более высокое давление воздействует на внешнюю поверхность регулирующей мембраны (5), в то время как через импульсную трубку (9) более низкое давление в обратном трубопроводе воздействует на внутреннюю сторону мембраны. Когда располагаемое давление увеличивается при неполной нагрузке, мембрана прогибается, избыток давления дросселируется на регуляторе перепада давлений. Таким образом, обеспечивается поддержание постоянного перепада давления ΔP_r внутри регулируемого участка, включая потерю давления на седле


регулирующей части клапана APQT (подобно тому, если бы запорно-балансировочный клапан MVT-R был бы встроен в клапан APT-R3).

Регулирующая часть APQT функционирует в качестве ограничителя расхода. Это делает возможным установку как расчетного расхода теплоносителя, так и необходимого перепада давления ΔP_r . Расход теплоносителя определяется предварительными настройками APQT в зависимости от располагаемого давления.

В комбинации с термоэлектроприводами клапаны APQT могут обеспечивать зональное регулирование. При подключении к программируемому контроллеру становятся доступны такие функции, как настройка ночного режима или режима выходного дня.

Габаритные и присоединительные размеры

Присоединительные фитинги

В качестве дополнительных принадлежностей для клапанов с наружной присоединительной резьбой компания «Ридан» рекомендует резьбовые фитинги.

Материал

Гайка: латунь.

Резьбовой фитинг: латунь.

DN клапана, мм	Размер резь- бы, дюймы	Длина резьбы, мм
15	R 1/2	40
20	R 3/4	43
25	R 1	49
32	R 1¼	61,5

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Техническое описание

Автоматические комбинированные балансировочные клапаны AQT-R3 DN15-32

Описание и область применения

Преимущества применения клапанов AOT-R3

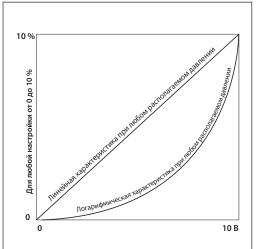
Клапаны AQT-R3 — автоматические балансировочные клапаны, стабилизаторы расхода. Основные области применения: ограничение и стабилизация расхода в системах с постоянными гидравлическими характеристиками, например в однотрубных стояках систем отопления или в системах холодоснабжения кондиционеров.

При установке на клапанах AQT-R3 электрического или термогидравлического привода к функции автоматического ограничителя расхода добавляется функция регулирующего клапана. Основные области применения: автоматическая балансировка и регулирование температуры в системах вентиляции и кондиционирования, в узлах тепло- и холодоснабжения.

Клапаны AQT-R3 обеспечивают в инженерных системах самую низкую совокупность капитальных и эксплуатационных затрат, связанных с регулирующей арматурой, благодаря следующим особенностям.

• Встроенная функция автоматической балансировки способствует повышению эффективности транспортировки тепло- или холодоносителя, оптимизирует работу насосов, исключая перерасходы электроэнергии, в том числе в режимах частичной нагрузки систем

- AQT-R3 с измерительными ниппелями дает возможность пропорционально управлять производительностью насосов.
- Благодаря встроенному регулятору перепада давления шток регулирующего клапана остается все время разгруженным, что минимизирует время работы приводов, обеспечивая стабильное регулирование температуры и увеличивая срок их службы.
- AQT-R3 позволяет быстро и просто вывести систему на проектные расходы.
- Настройка клапанов AQT-R3 проста, занимает менее минуты, не требует при этом специальных расчетов и измерительных инструментов и возможна даже при работающей системе.
- Обслуживание клапанов AQT-R3 сведено к минимуму, так как они в меньшей степени подвержены засорению благодаря особой конструкции мембранного элемента.
- Используя данные клапаны, можно запускать систему поэтапно, например поэтажно, предоставляя клиентам полностью функционирующие помещения. Перенастройка клапанов не потребуется после подключения остальных потребителей.
- АQТ-R3, сочетая в себе две функции регулирующего и автоматического балансировочного клапанов, позволяют снижать затраты на монтаж как минимум в 2 раза.



Характеристика регулирования

Клапаны AQT-R3 имеют линейную характеристику регулирования. Их работа не зависит от колебаний давления в системе, при этом авторитет клапанов всегда равен 1.

Ограничение расхода клапанами AQT-R3 достигается регулированием хода штока. Приводы Ридан откалиброваны в соответствии с ограниченной величиной хода штока, что сохраняет линейную характеристику регулирования вне зависимости от заданной настройки или перепада давления.

Так как характеристика регулирования является предсказуемой, приводы, установленные на клапанах АQТ-R3, можно использовать для преобразования линейного закона регулирования в логарифмический (равнопроцентный). Это позволяет использовать клапаны AQT-R3 в любых системах. Для переключения приводов с линейной на логарифмическую характеристику в них предусмотрен DIP-переключатель.

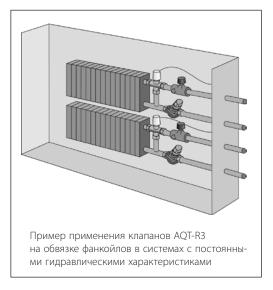
Характеристика регулирования клапанов AQT-R3 с редукторными электроприводами серии AME

Область применения (системы с переменным расходом)

Клапаны AQT-R3, оснащенные электроприводами, могут использоваться в качестве регулирующих клапанов со 100%-ным авторитетом с сочетанием функции ограничения расхода, т. е. автоматической балансировки. Клапаны могут применяться в обвязках фанкойлов, панелей лучистого обогрева или охлаждения, в центральных кондиционерах и других вентиляционных установках, а также в любых узлах, где традиционно применяются обычные двухходовые клапаны. AQT-R3 обеспечивают точное регулирование и требуемый расход на каждом потребителе и осуществляют автоматическую балансировку системы.

В отличие от других клапанов, благодаря особой конструкции встроенного регулятора перепада давления, даже частичная загрузка системы не влияет на качество регулирования температуры. Клапаны-регуляторы ограничивают расход ровно до необходимого в данный момент времени значения. Установив клапаны AQT-R3, можно разделить систему на независимые части, работа которых не будет влиять друг на друга.

Для клапанов AQT-R3 доступна полная линейка электроприводов для любых вариантов


автоматизации (с двух-, трехпозиционным и аналоговым управлением).

Применение AQT-R3 в качестве регулирующих клапанов снижает суммарное значение капитальных и эксплуатационных затрат:

- простое проектирование, не требующее сложных расчетов;
- один клапан заменяет несколько устройств;
- быстрый монтаж системы;
- простая настройка и запуск системы, максимальная гибкость при эксплуатации.

Область применения (системы с постоянным расходом)

В однотрубной системе отопления клапаны AQT-R3 устанавливаются на каждом стояке и могут использоваться в качестве регулятора — ограничителя расхода.

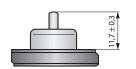
Клапаны автоматически ограничивают максимальный расход теплоносителя, что позволяет легко добиться точной балансировки всей системы.

Существуют другие варианты применения клапанов AQT-R3. Возможность использования данных клапанов обусловлена необходимостью применения как в функции регулирующего клапана, так и в функции автоматического стабилизатора расхода.

Примечание. За подробной информацией об областях применения клапанов AQT-R3 обращайтесь в ближайшее отделение компании «Ридан».

Особенности подбора, настройки и эксплуатации

- Самый быстрый гидравлический расчет и простое проектирование системы. Подбор клапана осуществляется исходя из требуемого расхода и диаметра трубопровода. Нет необходимости в определении авторитета и расчета К.,.
- Клапаны AQT-R3 могут применяться для всех систем отопления, тепло- и холодоснабжения, так как в сочетании с электроприводами они обеспечивают как линейную, так и логарифмическую характеристику регулирования.
- Компактная конструкция клапанов позволяет размещать их в условиях ограниченного пространства, например в корпусе вентиляционных доводчиков.


- Простота пусконаладочных работ. Не требуется ни специально обученного персонала, ни измерительного оборудования.
- Простота поиска и устранения неисправностей
- Быстрота ввода в эксплуатацию, так как клапаны AQT-R3 не нуждаются в предварительной промывке.
- Возможность поэтапного ввода системы без каких-либо ограничений. Клапаны AQT-R3 обеспечивают автоматическое регулирование расхода даже при незавершенном состоянии всего объекта. По завершении строительства объекта дополнительная регулировка клапанов AQT-R3 не требуется.

Номенклатура и коды для оформления заказа

Клапаны AQT-F	{3						
Общий вид	DN, mm	G _{ном.} , л/ч	Наружная резьба по ISO 228/1, дюймы	Кодовый номер	Эскиз клапана без измерит. ниппелей ¹	Наружная резьба по ISO 228/1, дюймы	Кодовый номер
	15 LF	275	G 34 A	003Z1811R3		G 34 A	003Z1801R3
	15	450	G % A	003Z1812R3		G % A	003Z1802R3
	20	900	G 1 A	003Z1813R3		G 1 A	003Z1803R3
	25	1700	G 1¼ A	003Z1814R3		G 1¼ A	003Z1804R3
	32	3200	G 1½ A	003Z1815R3		G 1½ A	003Z1805R3

Дополнительные принадлежности

Эскиз	Наименование	Наименование Соединение с трубопроводом		Кодовый номер	
	Резьбовой фитинг, 1 шт.	R 1/2	15	003Z0232R	
		R 3/4	20	003Z0233R	
		R 1	25	003Z0234R	
		R 11/4	32	003Z0235R	
	Металлическая запорная рукоятка (максимальное давление 16 бар)		15–32	013G3300R	

Положение штока в полностью закрытом положении для клапанов DN = 15-32 мм

Комбинации клапанов AQT-R3 DN15-32 с электроприводами

Тип	Напряжение питания	Совмести- мость	Управляющий сигнал	Обратная связь	Возвратное действие	Кодовый номер
TWA-QR 230 NC	230 B AC	DN 15-32		Нет	Закрывает	082F1600R
TWA-QR 230 NO	230 B AC	DN 15-20	2 позиции Вкл./	Нет	Открывает	082F1601R
TWA-QR 24 NC	24 B AC/DC	DN 15-32	Выкл.	Нет	Закрывает	082F1602R
TWA-QR 24 NO	24 B AC/DC	DN 15-20		Нет	Открывает	082F1603R
AME 110 NLXR	24 B AC/DC	DN 15-32	0,5(2)-10 В; 4(1)-20 мА; 3-позиционный	Есть	Нет	082H8060R

 $^{^{1}}$ AQT-R3 DN = 15–32 мм без измерительных ниппелей не может быть ими оснащен впоследствии

Технические характеристики

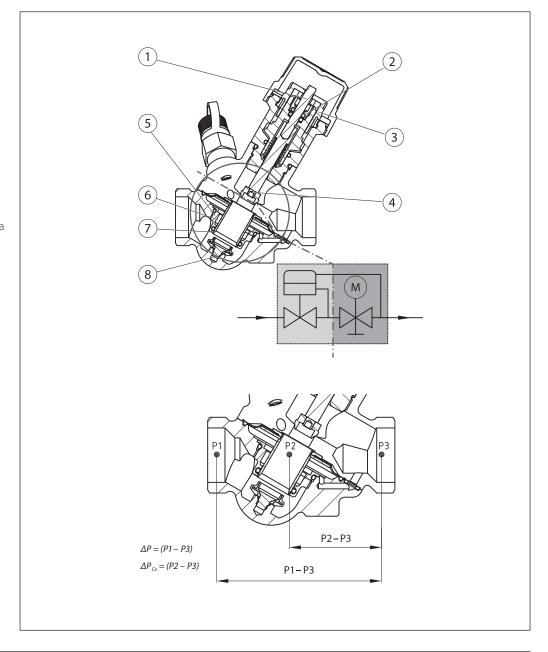
Клапаны AQT-R3

Условный проход DN, мм		15 LF	15	20	25	32		
Номинальный расход G _{ном} (N10), л/ч ¹⁾		275	450	900	1700	3200		
Максимальный расход G _{макс} , л/ч ⁴⁾		330	540	1080	1870	3520		
Диапазон настройки, N ²⁾		2–12 2–11						
Допустимый перепад давлений на клапане		16–400			20-400			
Δ _{p6κGном} , ($Δ$ _{p6κGмакс}), κΠа ^{3), 4)}		(18–400) (25–400)						
Условное давление PN, бар		16						
Характеристика регулирования		Линейная; с помощью привода может быть преобразована в логарифмическую						
Регулируемая среда		Вода и водный раствор гликоля для закрытых систем тепло- и холодоснабжения						
Диапазон температур регулируемой среды, °C		-10 120						
Ход штока, мм		2,25 (N10) 2,7 (N12)			4,5 (N10) 4,95 (N11)			
Присоединение	с трубопроводом (на- ружная резьба), дюймы	G 3/4 A	G 3/4 A	G1A	G 1¼ A	G 1½ A		
приотодиналис	с электроприводом	M30×1,5						
	корпус клапана	DZR Латунь						
	мембрана и кольцевые уплотнения	EPDM						
	пружина	Нержавеющая сталь						
	конус регулятора пере- пада давлений	Нержавеющая сталь						
Материал,	седло регулятора пере- пада давлений	EPDM						
контактирующий с водой	конус регулирующего клапана	Латунь						
	седло регулирующего клапана	DZR Латунь						
	винты	Нержавеющая сталь						
	плоское уплотнение	PTFE						
	уплотняющая смазка измерительных ниппелей	Диметакрилат эстер						
Материал, не пластиковые части		PA						
контактирующий с водой	вставки и наружные винты	Нержавеющая сталь, РА, латунь						

¹⁾ Заводская настройка клапана установлена на номинальное значение N10.

 $^{^{2)}\,\}mbox{Вне}$ зависимости от настройки клапана, аналоговое управление доступно с 0 %.

 $^{^{3)}}$ Рабочий диапазон перепадов давлений на клапане $\Delta P = P1-P3$, мин./макс. значение.


⁴⁾ При настройке свыше 10 минимально допустимый перепад давления на клапане становится выше, см. значения в скобках.

Устройство

Клапан AQT-R3 DN15-32

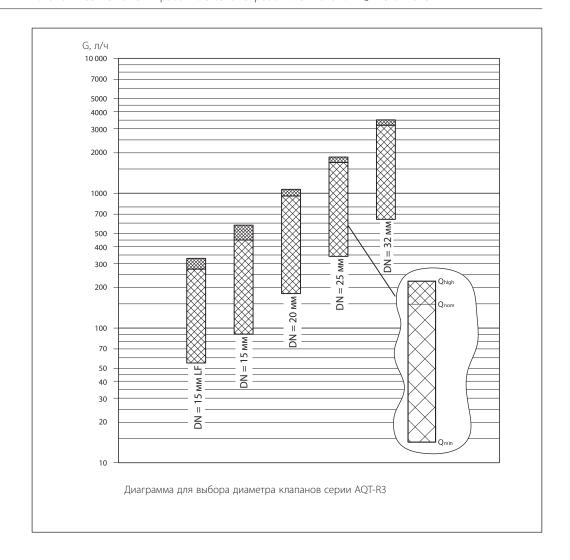
- 1. Шток регулирующего клапана.
- 2. Сальниковое уплотнение штока клапана.
- 3. Настроечная шкала.
- 4. Конус регулирующего клапана.
- 5. Мембрана.
- 6. Рабочая пружина.
- 7. Цилиндр регулятора перепада давлений.
- 8. Седло регулятора перепада давлений.

Принцип работы

Клапаны AQT-R3 состоят из двух частей:

- 1) регулятора перепада давления,
- 2) регулирующего клапана.

1. Регулятор перепада давления (РПД)


Для поддержания постоянного перепада давления на конусе регулирующего клапана (4) разница давлений (Р1 – Р3) передается на мембранный элемент (5) и компенсируется силой сжатия пружины. Всякий раз, когда перепад давления на конусе регулирующего клапана начинает изменяться, регулирующий цилиндр под воздействием мембраны меняет свое положение, сохраняя перепад давления на постоянном уровне.

2. Регулирующий клапан

Регулирующий клапан имеет линейную характеристику регулирования. Взаимодействие штока регулирующего клапана и мембранного элемента обеспечивает работу клапана AQT-R3 в качестве ограничителя расхода. Значения расхода на шкале даны от 0 до 12, что соответствует процентам от максимального расхода (2–20 %, 10–100 %). За счет поддержания постоянного перепада давления на регулирующем конусе клапана усилие привода для его перемещения будет незначительным. Это позволяет использовать электроприводы с небольшим развиваемым усилием.

Выбор типоразмера клапана

Пример 1. Система с переменным расходом

Дано

Потребность в холоде на единицу оборудования системы: $Q=1000\;\mathrm{Bt}$.

Температура холодоносителя в подающем трубопроводе: $T_x = 6 \, ^{\circ} C$.

Температура холодоносителя в обратном трубопроводе: $T_0 = 12 \, ^{\circ}\text{C}$.

Требуется:

Подобрать регулирующий балансировочный клапан.

Клапан AQT-R3 и типы приводов для системы диспетчеризации зданий.

Расчет:

Расход холодоносителя в системе:

$$Q = 0.86 \cdot Q/(T_0 - T_x) =$$

= 0.86 \cdot 1000/(12 - 6) = 143 л/ч.

Решение:

Клапан AQT-R3 DN15 LF с $G_{\text{макс}}=275$ л/ч с предварительной настройкой на 143/275 = 0,52 = N5,2 от полностью открытого положения. Приводы AME 110 NLXR — 24 В. *Примечание.* Минимально необходимый перепад давления на клапане AQT-R3 DN15 LF: 16 к Π a.

Выбор типоразмера клапана (продолжение)

Пример 2. Система с постоянным расходом

Дано:

Потребность в холоде на единицу оборудования системы: Q = 4000 Вт.

Температура холодоносителя в подающем трубопроводе: $T_x = 6$ °C.

Температура холодоносителя в обратном трубопроводе: $T_0 = 12 \, ^{\circ}\text{C}$.

Требуется:

Подобрать автоматический ограничитель максимального расхода.

Клапан AQT-R3 с определением его предварительной настройки.

Расчет:

Расход холодоносителя в системе:

$$Q = 0.86 \cdot Q/(T_0 - T_x) =$$

= 0.86 · 4000/(12 - 6) = 573 л/ч.

Решение:

Клапан AQT-R3 DN20 с $G_{\text{макс}} = 900$ л/ч с предварительной настройкой на 573/900 = 0,64 = N6,4 от полностью открытого положения.

Примечание. Минимально необходимый перепад давления на клапане AQT-R3 DN20: 16 кПа.

Пример 3. Выбор клапана AQT-R3 в зависимости от диаметра трубопровода

Дано:

Расход тепло- или холодоносителя G=1,4 м 3 /ч (1400 л/ч = 0,38 л/с), диаметр трубопровода DN = 25 мм.

Требуется:

Подобрать автоматический ограничитель максимального расхода.

Клапан AQT-R3 с определением его предварительной настройки.

Расчет:

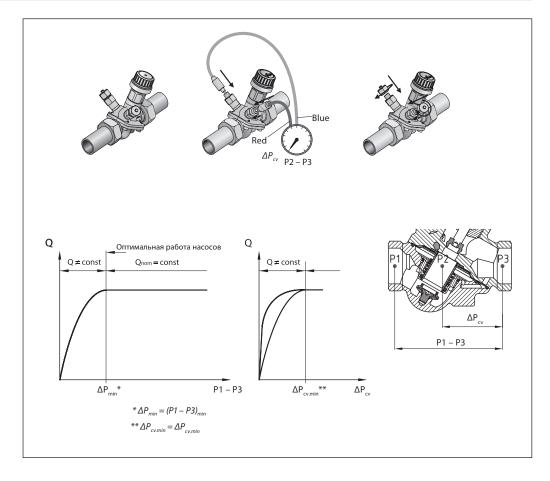
В этом случае выбираем клапан AQT-R3 DN=25 мм с $G_{\rm Makc}=1700$ л/ч.

При этом рекомендуется выполнить проверочный расчет максимальной скорости потока

рабочей среды в трубопроводе. Определяем максимальную скорость потока в трубопроводе для условий:

$$DN = 25 \text{ MM},$$

$$Д_{BH} = 27,2$$
 мм.


Размеры и скорость потока отвечают требованиям, скорость потока менее 1,0 м/с.

Решение:

Предварительная настройка клапана AQT-R3 DN25 должна составлять 1400/1700 = 0.82 = 80.2 от полностью открытого положения. Примечание. Минимально необходимый перепад давления на клапане AQT-R3 DN25: 20 k Ra.

Оптимизация работы насоса

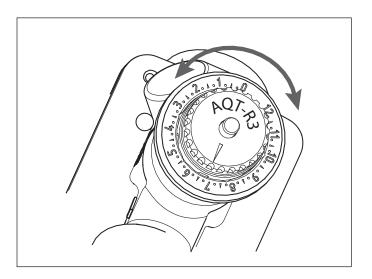
Установка измерительных ниппелей на клапаны AQT-R3 DN15–32 позволяет измерять перепад давления на регулирующем клапане ΔP (P2 – P3). Если перепад давления превышает определенное значение (в зависимости от настройки и типоразмера клапана) — это значит, что все условия для нормальной работы регулятора соблюдены и возможно выполнение автоматического ограничения расхода в системе. Измерения следует производить для определения наличия минимально необходимого перепада давления на клапане, а также для определения расхода регулируемой среды в системе.

Данные, полученные в результате измерений, можно также использовать для оптимизации работы насоса. Напор насоса можно уменьшать до тех пор, пока обеспечивается минимально допустимый перепад давления на клапане, находящемся в самой отдаленной точке системы (в гидравлическом отношении). В результате измерений и регулировки насоса необходимо добиться оптимального сочетания перепада давления на клапане и напора насоса. Измерение давления можно производить при помощи прибора T650.

Настройка клапанов AQT-R3

Установка расчетного расхода легко производится без применения специального инструмента.

Для изменения настроек необходимо (см. puc.):


- Снять белый защитный колпачок или установленный привод:
- 2).Повернуть настроечную шкалу до совпадения риски на колпачке с нужной настройкой.

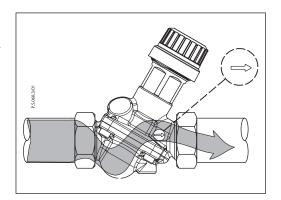
Шкала настройки клапана размечена от 0 до 12 (или 11 для DN25 и DN32). Когда клапан выставлен на настройку N0 — клапан полностью

закрыт. Рекомендуется использовать настройки от N2 до N10. При настройке клапана выше N10 необходимо обеспечить повышенный перепад давления на клапане. Настройки ниже N2 использовать не рекомендуется. Заводская настройка клапана — N10.

Пример

Клапан DN = 15 мм имеет максимальный расход 450 л/ч при настройке на N10. Для получения расхода 270 л/ч необходимо настроить клапан следующим образом: 270/450 = 0.6 = N6.

Обслуживание


Клапаны AQT-R3 оснащены пластиковой защитной рукояткой (защитная рукоятка не является запорной). В качестве запорной рукоятки

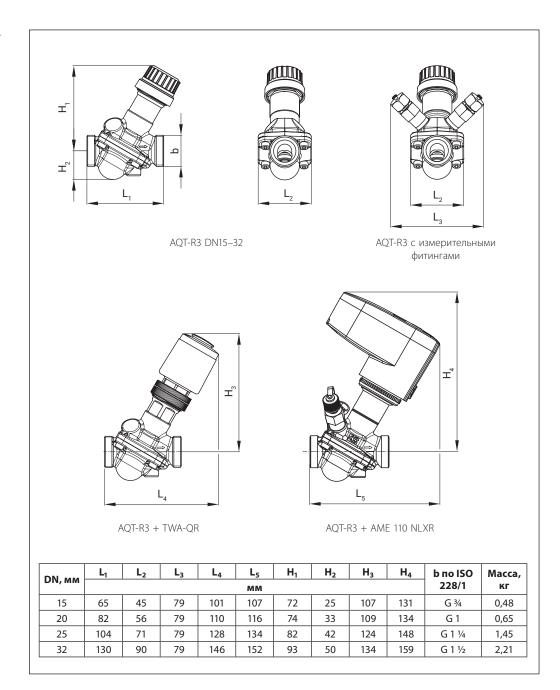
необходимо использовать металлическую запорную рукоятку (кодовый номер 013G3300R).

Монтаж

При установке клапана направление стрелки на его корпусе должно совпадать с направлением потока. Если условие не выполняется, то клапан будет функционировать некорректно.

Если на клапан будет установлен привод, то клапан нельзя монтировать штоком вниз.

Техническое описание


Автоматические комбинированные балансировочные клапаны AQT-R3 DN15-32

Основные особенности клапанов AQT-R3

- Независимый от колебаний давления регулирующий балансировочный клапан включает в себя комбинацию двухходового регулирующего клапана с линейной характеристикой и встроенный регулятор перепада давлений мембранной конструкции.
- Клапаны доступны в исполнении DN = 15-32 мм.
- Клапаны также можно использовать в качестве автоматических ограничителей расхода.
- Клапан оснащен функцией плавной настройки от 0 до 10. Настройка может производиться при работающей системе.
- Функция перекрытия возможна с помощью настроечного механизма выставлением настройки на «0» для всех типоразмеров клапанов.
- Настройка производится вручную без дополнительных инструментов.
- Для клапанов существует возможность замены их сальникового блока под давлением.
- Авторитет регулирующего клапана равен 1 при любых настройках клапана (характеристика регулирования клапана не изменяется).
- Клапан имеет линейную характеристику при любом располагаемом давлении. Для перевода клапана в логарифмический режим регулирования используются соответствующие настройки электропривода.
- Клапаны с измерительными ниппелями для оптимизации работы сетевых насосов доступны во всех типоразмерах.

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Автоматический комбинированный балансировочный клапан AQT-R DN40-50

Описание

Комбинированные автоматические балансировочные клапаны AQT-R DN40–50 сочетают в себе функции ограничителя расхода и регулирующего клапана. При применении AQT-R DN40–50 без привода клапан в автоматическом режиме обеспечивает настроенный расход (требуется фиксатор штока). Совместно с приводом клапан позволяет регулировать расход тепло- или холодоносителя, при этом авторитет клапана стремится к единице.

Номенклатура и кодовые номера для оформления заказа

Клапан AQT-R

DN, mm	Q _{max} , м³/ч	PN, бар	Кодовый номер
40	7,5	זר	003Z1970R
50	10	25	003Z1971R

Дополнительные принадлежности

Наименование	Совместимость	Кодовый номер
Фиксатор штока	AQT-R DN 40–50 AQF-R DN 65–150	003Z0695R

Автоматический комбинированный балансировочный клапан AQT-R DN40-50

Технические характеристики

DN, MM	40	50	
Диапазон расхода Q _{ном} (100 %), м³/ч	7,5	10	
Диапазон расхода Q_{min} , $M^3/4$	1,2	2,9	
Перепад давления Др _{мин} , кПа	30	30	
Перепад давления $\Delta p_{\text{макс}}$, кПа	400	400	
РN, бар	25	25	
Присоединение	Внутренняя резьба		
Характеристика регулирования клапана	Линейная		
Протечка	0,01 % от Q _{max}		
Перемещаемая среда	Вода, водогликолевые смеси до 50 %		
Температура рабочей среды, °С	От –5	до 110	
Температура окружающей среды, °С	От 2	до 50	
Температура хранения и транспортировки, °С	От –4	0 до 50	
Ход штока, мм	10	15	
Масса, кг	2,7	3	
Основные материалы	Корпус, конус, пружина, шток — нерж. сталь Уплотнения — EPDM		

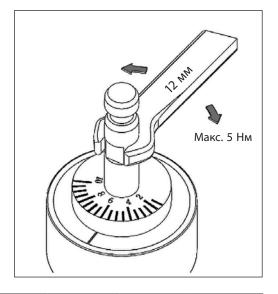
Обзор привода

Электропривод AME-1000R-24 предназначен для управления различными регулирующими и комбинированными клапанами, в том числе AQT-R DN40–50. Привод управляется аналоговым сигналом 0(2)–10 В или 4(0)–20 мА. Привод

АМЕ-1000R-24 обладает возможностью ручного позиционирования, индикацией положения, концевыми моментными выключателями, которые защищают привод от перегрузок.

Номенклатура и кодовые номера для заказа привода

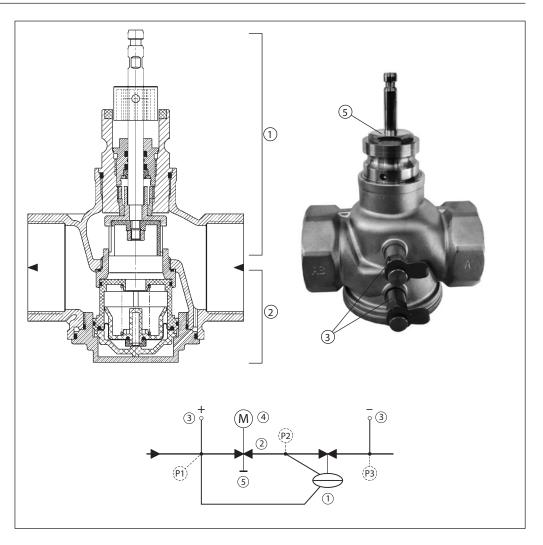
Эскиз	Тип	Совместимость с клапаном	Напряжение питания	Управление	Кодовый номер
	AME-1000R-24	AQT-R DN 40-50	24 B AC	Аналоговое, 0(2)–10 В, 4(0)–20 мА	082G3025R


Технические характеристики привода

Наименование	AME-1000R-24
Питающее напряжение, В	24 AC
Потребляемая мощность, ВА	6,7
Частота тока, Гц	50
Входной управляющий сигнал	0(2)-10 В, 4(0)-20 мА
Выходной сигнал обратной связи	0(2)-10 B, 4(0)-20 mA
Развиваемое усилие, Н	1000
Максимальный ход штока, мм	22
Скорость перемещения штока, с/мм	3,9
Температура теплоносителя, °С	От –5 до 110
Рабочая температура окружающей среды, °C	От –10 до 50
Температура транспортировки и хранения, °С	От –40 до 70
Класс защиты	IP54
Масса, кг	1,9

Настройка клапана

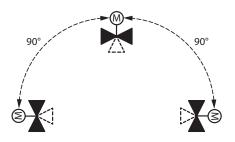
Для настройки расхода, проходящего через клапан, используйте 12 мм гаечный ключ. Вращайте шток вправо или влево, пока требуемое значение настройки не совпадет с риской (см. рисунок).

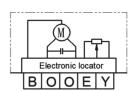


Настройка	1,5	2	4	6	8	10
DN	Расход через клапан при различных настройках, м³/ч¹)					
40	1,2	1,3	3,1	4,7	6	7,5
50	2,9	3,1	5,1	6,6	8,2	10

 $^{^{1)}}$ Для сохранения точности регулирования не рекомендуется настраивать клапан на расходы ниже 30 % от расхода при настройке 10.

Устройство


- 1. Блок регулятора перепада давления.
- 2. Блок регулирующего клапана.
- 3. Ниппели.
- 4. Электрический привод (заказывается отдельно).
- 5. Настроечная шкала.


Монтажные положения

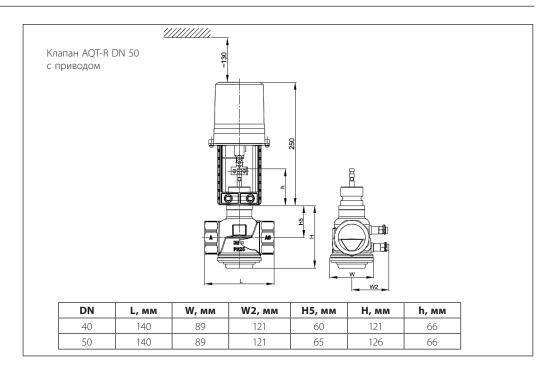
Клапаны с приводом AME-1000R-24 могут быть смонтированы с отклонением не более 90 градусов от вертикального положения (см. рис.). Не допускается монтаж клапана приводом вниз. Клапаны AQT-R допустимо монтировать штоком вниз, однако, в этом случае, недопустимо использовать электрический привод

Схема электрических соединений приводов АМЕ

В	System potential 24VAC	~
0	System neutral 0VAC	>
0	Signal neutral (-)	Т
Е	Positioning signal(+)	P
Υ	Position feedback (+)	Đ

Рекомендуемое сечение жил кабеля 1,5 мм².

В — фаза питающего напряжения (24 В пер. тока);


О — нейтраль, общий (0 В);

Е — входной управляющий сигнал (0–10 или

2-10 В, 0-20 или 4-20 мА);

Y — выходной сигнал обратной связи (0–10 или 2–10 В).

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Автоматический балансировочный клапан AQF-R DN65-200

Описание

Комбинированный автоматический балансировочный клапан AQF-R сочетает в себе функции ограничителя расхода и регулирующего клапана. При применении AQF-R без привода клапан в автоматическом режиме обеспечивает настроенный расход (требуется фиксатор штока). Совместно с приводом также позволяет регулировать расход тепло- или холодоносителя, при этом авторитет клапана стремится к единице.

Клапаны AQF-R поставляются с диаметрами от DN65 до DN200 и позволяют поддерживать и/или регулировать расход до 175 м 3 /ч.

Номенклатура и кодовые номера для оформления заказа

Клапаны AQF-R DN65-200

DN, mm	Q _{max} , м³/ч	PN, бар	Кодовый номер
65	24		003Z1973R
80	34		003Z1974R
100	48	16	003Z1975R
125	75	16	003Z1905R
150	140		003Z1906R
200	175		003Z1907R

Дополнительные принадлежности

Наименование	Совместимость	Кодовый номер
Фиксатор штока	AQT-R DN 40–50 AQF-R DN 65–150	003Z0695R

Texнические характеристики клапанов AQF-R

DN, mm		65	80	100	125	150	200
Диапазон	Q _{ном} (100 %)	24	34	48	75	140	175
расхода, м³/ч	Q _{min}	5,9	9,2	13	20,3	38,5	48
Перепад	Δр _{мин}			30			35
давления, кПа	Δр _{макс}			4	400		
Условное давлени	е PN, бар				16		
Характеристика ре клапана	егулирования	Линейная					
Протечка		0,01 % ot Q _{max}					
Перемещаемая ср	еда	Вода, водогликолевые смеси до 50 %					
Температура рабо	чей среды, °С			От –	5 до 110		
Температура округ среды, °С	жающей			От 2	2 до 50		
Температура хранстранспортировки,				От –4	40 до 50		
Ход штока, мм		18	18	25	30	40	25
Масса, кг		25	32	43	65	83	115
Основные материалы		Корпус – ковкий чугун					
		Конус, пружина, шток – нержавеющая сталь					
		Уплотнения – EPDM					

Обзор приводов

Электроприводы AME QFR предназначены для управления комбинированными клапанами AQF-R DN65–200. Приводы управляются аналоговым сигналом 0(2)–10 В или 4(0)–20 мА. Приводы AME QFR обладают возможностью ручного позиционирования, индикацией положения, концевыми моментными выключателями, которые защищают привод от перегрузок.

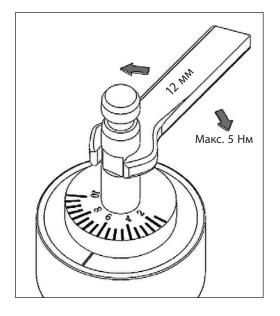
Номенклатура и кодовые номера для заказа приводов

Приводы AME QFR

Наименование	Совместимость1)	Напряжение питания	Управление	Кодовый номер	
AME 65 QFR	AQF-R 65	24 B AC			082H0171R
AME 80–100 QFR	AQF-R 80-100		Аналоговый сигнал	082H3078R	
AME 125-150 QFR	AQF-R 125–150		0(2)-10 В или 4(0)-20 мА	082H5010R	
AME 200 QFR	AQF-R 200 ²⁾		7(0)-20 MA	082H5013R	

 $^{^{1)}}$ Совместимость с другими диаметрами клапанов AQF-R можно уточнить в компании ООО «Ридан».

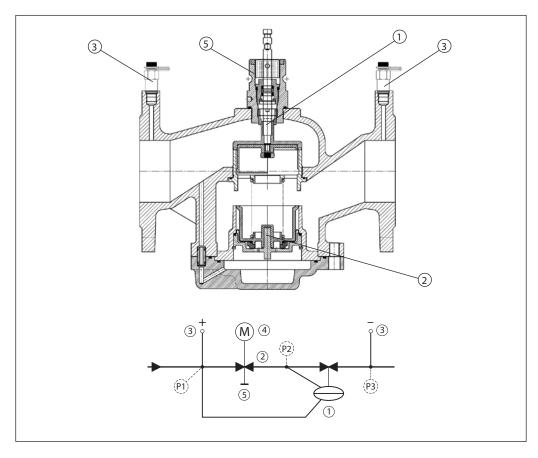
Технические характеристики приводов


Привод	AME 65 QFR	AME 80-100 QFR	AME 125-150 QFR	AME 200 QFR	
Питающее напряжение, В			24		
Потребляемая мощность, ВА	6,7		18		
Частота тока, Гц			50		
Входной управляющий сигнал		0(2)-10 B,	4(0)-20 mA		
Выходной сигнал обратной связи		0(2)-10 B,	4(0)-20 mA		
Развиваемое усилие, Н	1500	3000	3000	4000	
Максимальный ход штока, мм	22	25	50	25	
Скорость перемещения штока, с/мм	3,9 3,1				
Температура теплоносителя, °С		От –5	до 110		
Рабочая температура окружаю- щей среды, °C	От –10 до 50				
Температура транспортировки и хранения, °C	От –40 до 70				
Класс защиты	IP 54				
Масса кг	2 4,7				

²⁾ Максимальный перепад давления, преодолеваемый приводом, не более 3 бар.

Настройка клапанов AQF-R

Для настройки расхода, проходящего через клапан, используйте 12 мм гаечный ключ. Вращайте шток вправо или влево, пока требуемое значение настройки не совпадет с риской (см. рисунок).



Настройка	1,5	2	4	6	8	10
DN		Расход чере	з клапан при ра	азличных настр	ойках, м³/ч¹)	
65	5,9	6,6	11,4	17,2	20,3	24
80	9,2	10,2	17	22,4	28,6	34
100	13	14,5	24	31,7	40,3	48
125	20,3	22,5	37,5	49,5	63	75
150	37	42	70	92	117	140
200	48	52	87	115	147	175

 $^{^{1)}}$ Для сохранения точности регулирования не рекомендуется настраивать клапан на расходы ниже 30 % от расхода при настройке 10.

Устройство

- 1. Блок регулятора перепада давления.
- 2. Блок регулирующего клапана.
- 3. Ниппели.
- 4. Электрический привод (заказывается отдельно).
- 5. Ниппели.

Монтаж

Приводы серии AME QFR могут быть смонтированы с отклонением не более 90 градусов от вертикального положения (см. рис.). Не допускается монтаж клапана приводом вниз. Клапаны AQF-R допустимо монтировать штоком вниз, однако, в этом случае, недопустимо использовать электрический привод

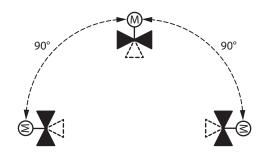
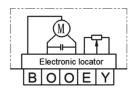
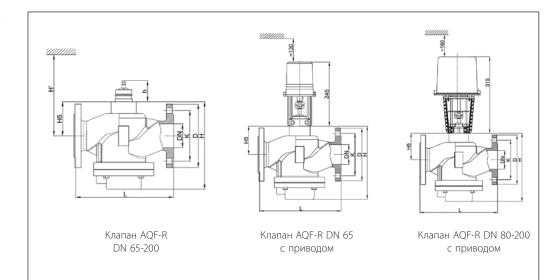



Схема электрических соединений приводов AME QFR

В	System potential 24VAC	\$
0	System neutral 0VAC	\$
0	Signal neutral (-)	Τ
Ε	Positioning signal(+)	P
Y	Position feedback (+)	Đ

Рекомендуемое сечение жилы кабеля 1,5 мм².

В — фаза питающего напряжения (24 В пер. тока);


О — нейтраль, общий (0 В);

E — входной управляющий сигнал (0–10 или 2–10 В, 0–20 или 4–20 мА);

Y — выходной сигнал обратной связи (0–10 или 2–10 В).

Габаритные и присоединительные размеры

DN	L, мм	D, мм	К, мм	Кол-во болтов	Н, мм	Н5, мм	h, мм	Н′, мм
65	290	185	145	4 x M16	248	90		578
80	310	200	160	8 x M16	252	101		712
100	350	220	180	8 x M16	296	111		756
125	400	250	210	8 x M16	339	127	66	799
150	480	285	240	8 x M20	370	141		830
200	495	340	295	12 x M20	448	145		840

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Электрические приводы Ридан AME 110 NLXR и AME 110 MR

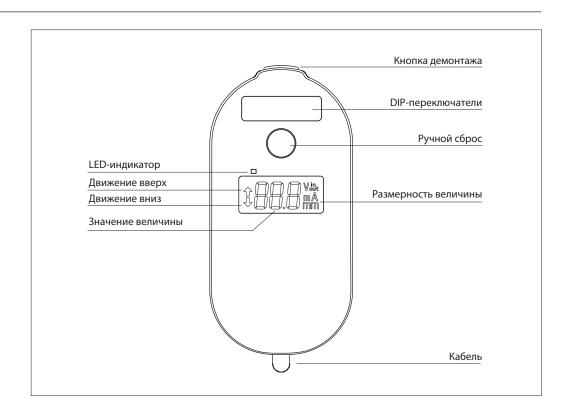
Описание и область применения

Электроприводы AME 110NLXR и AME 110MR предназначены для работы с комбинированным регулирующим клапаном AQT-R DN 15–32, управляющим подачей тепло- или холодоносителя в фанкойлы или небольшие вентиляционные установки.

Основные характеристики

- Автоматическое определение хода штока в диапазоне от 2 до 8 мм.
- Сигнал управления привода AME 110NLXR аналоговый или трехточечный, привода AME 110MR — Modbus RS485.
- Сигнал обратной связи.
- Линейная или логарифмическая характеристика регулирования.
- Не требуют использования каких-либо инструментов для монтажа.
- Низкий уровень шума.
- В комплект поставки входит кабель длиной 1 м.

Номенклатура и кодовые номера для оформления заказа

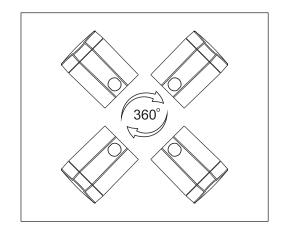

Тип	Напряжение питания	Сигнал управления	Сигнал обратной связи	Кодовый номер
AME 110 NLXR	24 B AC\DC	0,5(2)–10 В или 1(4)–20 мА или трехточечный	0–10 B DC	082H8060R
AMR 110 MR		Modbus RS-485	Modbus RS-485	082H8059R

Электрические приводы Ридан AME 110 NLXR и AME 110 MR

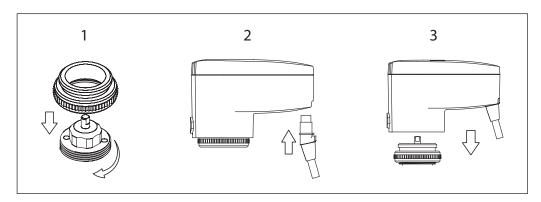
Технические характеристики

Тип привода	AME 110 NLXR	AME 110 MR		
Питающее напряжение	24 В АС или	DC, ±15 %		
Потребляемая мощность, Вт	1,	2		
Управляющий сигнал	0,5(2)–10 В, 1(4)–20 мА, трехточечный	Modbus RS-485		
Сигнал обратной связи	0–10 B DC	Modbus RS-485		
Развиваемое усилие, Н	125 ил	и 200		
Ход штока, мм	2–8			
Скорость перемещения штока, с\мм	10 или 30			
Ручное управление	Есть (в серви	Есть (в сервисных целях)		
Класс защиты	IP54			
Масса, кг	0,18			
Температура окружающей среды, °С	-1050			
Температура транспортировки и хранения, °С	-4070			
Максимальная температура среды клапана, °С	95			
Индикация	LED-дисплей и светодиод			

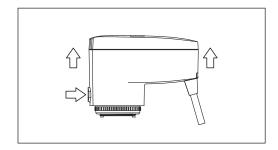
Устройство



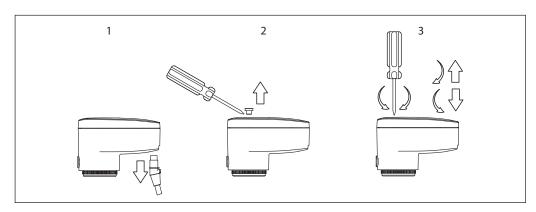
Монтаж


Монтажные положения

Допускается установка электропривода в любом монтажном положении.


Монтаж привода

- 1. Прикрутите адаптер на клапан.
- 2. Вставьте кабель в привод.
- 3. Смонтируйте привод на клапан с адаптером до щелчка.


Демонтаж привода

Для демонтажа привода нажмите на кнопку демонтажа и потяните привод вверх.

Ручное позиционирование

- 1. Отключите кабель от привода.
- 2. Удалите круглую заглушку.
- 3. Используйте шлицевую отвертку для изменения положения штока привода.

Схема электрических соединений

Электрическая схема подключения AME 110NLXR, аналоговое управление

Электрическая схема подключения AME 110NLXR, трехточечное управление

Электрическая схема подключения AME 110MR

Установка DIP-переключателей

Для доступа к DIP-переключателям снимите продолговатую заглушку. Все DIP-переключатели по умолчанию находятся в положении ВКЛ.

Параметры DIP-переключателей для AME 110NLXR

DIP-переключатели привода AME 110 NXLR служат для настройки его параметров. Настраиваемые параметры представлены в табилце ниже.

#DIP	вкл	выкл
1	Усилие 125 H	Усилие 200 H
2	Скорость 10 с/мм	Скорость 30 с/мм
3	Управляющий сигнал в мА	Управляющий сигнал в В
4	Управляющий сигнал 0,5–10 В или 1–20 мА	Управляющий сигнал 2–10 В или 4–20 мA
5	Движение привода прямое	Движение привода обратное
6	LIN-характеристика регулирования	LOG-характеристика регулирования
7	Обратная связь обычная	Обратная связь масштабируемая
8	Управление аналоговое	Управление трехточечное

Параметры DIP-переключателей для AME 110MR

DIP-переключатели привода AME 110 NXLR служат для настройки адреса привода в диапазоне 1–255.

Электрические приводы Ридан AME 110 NLXR и AME 110 MR

Коммуникационные возможности

Параметры Modbus RS-485

Привод AME 110 MR имеет следующие параметры соединения Modbus RS-485:

Baud rate (скорость передачи данных): 9600 бит/с.

Data length (количество бит данных): 8 бит.

Stop length (количество стоп битов): 1 бит.

Parity bit (контроль четности): нет.

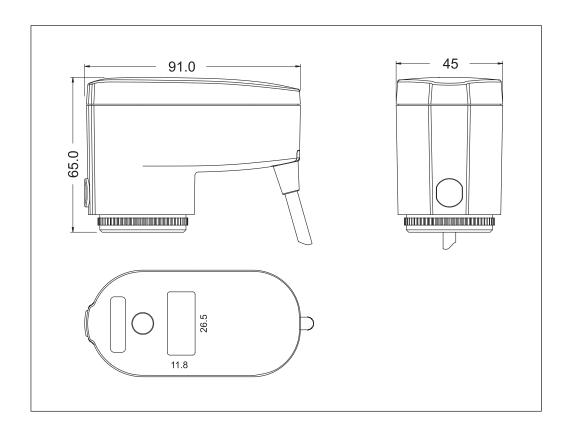
Адреса Modbus RS-485

Адрес	Наименование	Значение	Описание	Чтение/Запись
00	Режим	0/1	0: Калибровка 1: Обычный режим	Только чтение
01	Скорость	10/30	10: 10 c/мм 30: 30 c/мм	Чтение/Запись
02	Усилие	125/200	125: 125 H 200: 200 H	Чтение/Запись
03	Направление	0/1	0: Прямое 1: Обратное	Чтение/Запись
04	Характеристика	0/1	0: LIN 1: LOG	Чтение/Запись
05	Сигнал управления	0–100	0–100 % сигнала управления	Чтение/Запись
06	Сигнал обратной связи	0–100	0–100 % сигнала обратной связи	Только чтение
07	Текущее положение (мм)		Открытие клапана в мм	Только чтение
08	Ход штока (мм)		Ход штока клапана	Только чтение

Запуск в эксплуатацию

При каждом включении привод выполняет процедуру самокалибровки, при этом моргает светодиод.

Никогда не вмешивайтесь в процесс калибровки.


Индикация

Привод оснащен светодиодом и дисплеем. Когда привод активен, светодиод горит непрерывно. Во время калибровки светодиод непрерывно моргает.

Во время работы на экране привода отображается информация о входном и выходном сигналах, а также информация о положение штока привода и его движении.

Габаритные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Ручной балансировочный клапан MVT-R DN15-50

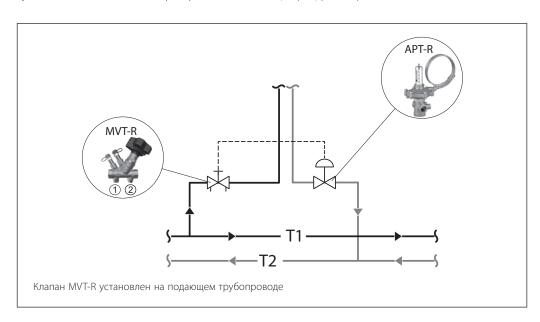
Описание и область применения

Клапан MVT-R — это ручной балансировочный клапан, предназначенный для гидравлической балансировки систем отопления, тепло- и холодоснабжения, а также систем ГВС.

MVT-R помимо основной функции настройки требуемой пропускной способности имеет ряд дополнительных особенностей:

- простая настройка и блокировка настройки;
- 100% перекрытие потока;
- съемная и заменяемая настроечная рукоятка;
- оснащен двумя измерительными ниппелями игольчатого типа;
- два отверстия для дренажа и\или подключения импульсной трубки;
- материал клапана DZR-латунь.

Ручной балансировочный клапан MVT-R предназначен для применения как в системах с постоянным, так и в системах с переменным расходом. В системах с постоянным расходом клапан MVT-R может применяться как основной вид балансировочной арматуры. В система с переменным расходом клапан MVT-R применяется как клапан-партнер для автоматических балансировочных клапанов серии APT и AB-PM, а также для дополнительной увязки контуров конечных потребителей.

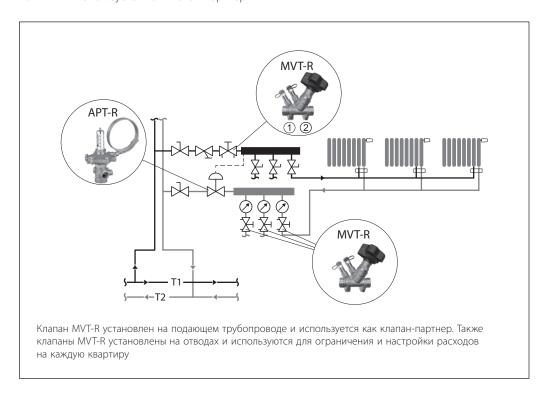

Клапан может быть установлен как на обратном, так и на подающем трубопроводе. При использовании совместно с APT клапан MVT-R должен быть смонтирован на подающем трубопроводе, а совместно с AB-PM — на обратном.

Клапан MVT-R выпускается с DN = 15-50 мм и имеет внутреннюю резьбу.

Примеры применения

Применение клапана для вертикальной двухтрубной системы отопления

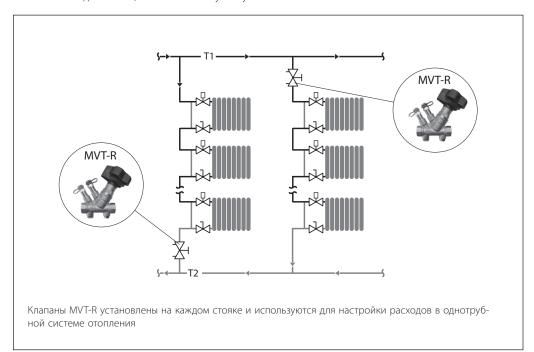
В этом решении клапан MVT-R используется в качестве клапана-партнер к APT-R. В зависимости от выбранной точки подключения импульсной трубки, клапан может как входить (точка подключения 1), так и не входить в регулируемый участок (точка подключения 2).



Примеры применения *(продолжение)*

Применение клапана MVT-R в горизонтальной двухтрубной системе отопления

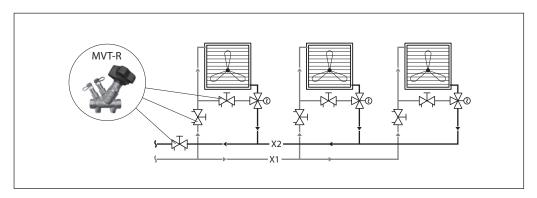
Клапаны MVT-R в этом случае устанавливаются на каждом квартирном отводе (на подающем или обратном трубопроводе). Также клапан MVT-R используется как клапан-партнер к


автоматическому балансировочному клапану. В зависимости от выбранной точки подключения импульсной трубки, клапан может как входить (точка подключения 1), так и не входить в регулируемый участок (точка подключения 2).

Применение в вертикальной однотрубной системе отопления

Клапаны MVT-R как правило устанавливаться на каждый стояк, обеспечивают увязку

циркуляционных колец в системе с постоянным расходом и могут быть установлены как на обратном, так и на подающем трубопроводе.


Ручной балансировочный клапан MVT-R DN15-50

Примеры применения *(продолжение)*

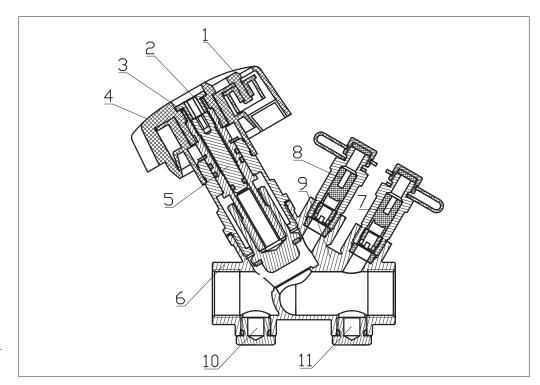
Применение в системе холодоснабжения с постоянным расходом

Клапаны MVT-R устанавливаются перед каждым узлом регулирования и перед каждой группой установок для обеспечения расчетного

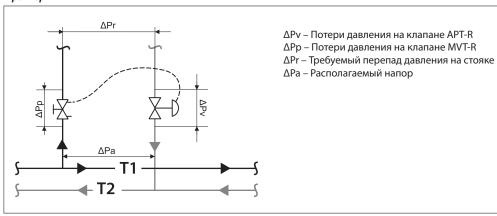
расхода. На перемычке клапан MVT-R обеспечивает постоянный расход через узел регулирования при работе трехходового клапана, а также более плавную характеристику регулирования.

Номенклатура и кодовые номера для оформления заказа

Эскиз	DN, mm	Пропускная способ- ность Kvs, м³/ч	Размер внутр. резьбы по ISO 7/1, дюймы	Кодовый номер
	15LF	2,54	Rp ½	003Z4040R
_	15	4,81	Rp ½	003Z4041R
- C	20	5,19	Rp ¾	003Z4042R
OF THE	25	8,03	R _p 1	003Z4043R
	32	14,11	Rp 1¼	003Z4044R
-3-0-	40	19,27	Rp 1½	003Z4045R
	50	28,00	R _p 2	003Z4046R


Технические характеристики

Номинальный диаметр, мм	15–50		
Макс. рабочее давление PN, бар	16		
Испытательное давление, бар	25		
Макс. перепад давления на клапане, бар	1,5		
Протечка при перекрытии	Без видимой протечки ISO5208		
Рабочая температура среды, °C	0120		
Температура транспортировки и хранения, °C	-4070		
Холодоноситель	Этиленгликоль, пропиленгликоль 50 %		
Материалы и детали, контактирующие с водой			
Корпус клапана	DZR-латунь CW602N		
Золотник	DZR-латунь CW602N		
Уплотнения	EPDM		


Устройство

- 1. Настроечная рукоятка.
- 2. Винт фиксации рукоятки.
- 3. Винт блокировки настройки.
- 4. Окно индикации значения настройки.
- 5. Шток клапана.
- 6. Корпус клапана.
- 7. Измерительный ниппель после седла (синий).
- 8. Измерительный ниппель до седла (красный).
- 9. Блок измерительных ниппелей.
- 10. Отверстие для подключения импульсной трубки (клапан не входит в регулируемый участок).
- 11. Отверстие для подключения импульсной трубки (клапан входит в регулируемый участок).

Примеры подбора клапана

Пример 1

Дано

Вертикальная система радиаторного отопления с термостатическими клапанами и функцией преднастройки.

Расчетный расход теплоносителя через стояк (Q): 400 л/ч.

Минимальный располагаемый напор (Δ Pa): 40 кПа. Расчетные потери давления на стояке при расчетном расходе (Δ Pr): 10 кПа.

Диаметр стояка 25 мм.

Найти

Размер и настройку клапана MVT-R.

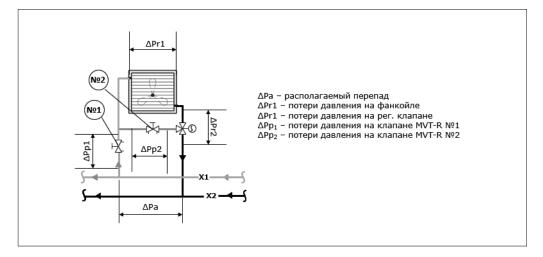
Решение

Как правило радиаторные клапаны оснащены функцией преднастройки, и в этом случае допустимо выбрать решение без клапана партнера. Но наличие на подаче клапана, который

имеет настройку пропускной способности и возможность подключить прибор наладки к измерительным ниппелям, облегчает пусконаладочные и эксплуатационные работы. В качестве такого клапана предусмотрен MVT-R.

В случае применения клапанов APT-R в качестве основного элемента балансировки, перепад на клапане MVT-R принимается минимально необходимым для проведения точных измерений и равен 3 кПа, а диаметр выбирается по диаметру стояка.

Расчетное значение пропускной способности на клапане MVT-R составляет:


$$K_V = G (M^3/4)/\sqrt{\Delta}P (6ap) = 0.4/\sqrt{0.03} = 2.3 M^3/4.$$

Диаметр клапана MVT-R принимаем по диаметру стояка 25 мм, настройка N=x,y (см. таблицу K_V при различных настройках).

Примеры подбора клапана *(продолжение)*

Пример 2

Дано

Обвязка фанкойла системы холодоснабжения с постоянным расходом.

Расчетный расход через фанкойл (Q): 800 л/ч. Располагаемый напор (Δ Pa): 40 кПа.

Потери давления в фанкойле при расчетном расходе (Δ Pr1): 12 кПа.

Потери давления на регулирующем клапане при расчетном расходе (Δ Pr2): 15 кПа. Диаметр подводки к фанкойлу 20 мм.

Найти

Размер и настройку клапанов МVТ-R №1 и \mathbb{N}^2 .

Решение

Часто диаметр ручных балансировочных клапанов принимается по диаметру трубопровода на котором он располагается, но в некоторых случаях, при достаточно большом перепаде, клапаны могут быть на 1–2 типоразмера меньше трубы. Это обусловлено требуемым значением пропускной способности.

Клапан №1 необходим для увязки фанкойла в общей гидравлической системе.

Расчетное значения необходимого значения потерь на клапане MNT-R №1 составит:

$$\Delta Pp1 = \Delta Pa - \Delta Pr1 - \Delta Pr2 = 40 - 12 - 15 = 13 \text{ } \kappa \Pi a.$$

Расчетное значение пропускной способности на клапане MVT-R №1 составляет:

$$K_V = G (M^3/4)/\sqrt{\Delta P} (6ap) = 0.8/\sqrt{0.13} = 2.2 M^3/4.$$

Диаметр клапана MVT-R №1 принимаем по диаметру стояка 20 мм, настройка N=x,y (см. таблицу K_V при различных настройках).

Клапан №2 необходим для сохранения постоянного расхода через фанкойл при закрытии трехходового клапана.

Расчетное значения необходимого значения потерь на клапане MNT-R №2 составят:

$$\Delta$$
Pp2 = Δ Pr1 = 12 κΠa

Расчетное значение пропускной способности на клапане MVT-R №1 составляет:

$$K_V = G (M^3/4)/\sqrt{\Delta}P (6ap) = 0.8/\sqrt{0.12} = 2.3 M^3/4.$$

Диаметр клапана MVT-R №1 принимаем по диаметру стояка 20 мм, настройка N=x,y (см. таблицу K_V при различных настройках).

Монтаж

Перед установкой клапана трубопроводы системы должны быть промыты.

- 1. Следует предусмотреть свободное пространство вокруг клапана для его установки на трубопровод.
- Стрелка на корпусе клапана должна совпадать с направлением движения среды.
- 3. Рукоятка может быть демонтирована. Для этого необходимо открутить винт 5 с помощью стандартного шестигранника.

Настройка

Настройка производится с помощью рукоятки без использования дополнительных инструментов. Вращение рукоятки по часовой стрелке уменьшает значение пропускной способности, против часовой увеличивает. На рукоятке 1 указаны стрелки и символы «+» и «-» для более удобного понимания направления вращения. При вращении рукоятки в окне 2 отображаются целые значения настройки, в окне 3 десятые. Значение 0 означает полное закрытие клапана. С помощью винта 4 можно ослабить крепление рукоятки шестигранным ключом для ее

Через отверстие 5, с помощью шестигранника меньшего размера, можно заблокировать настройку.

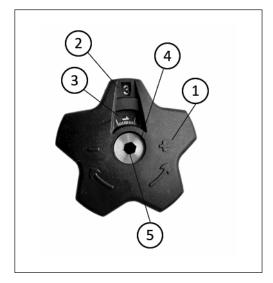
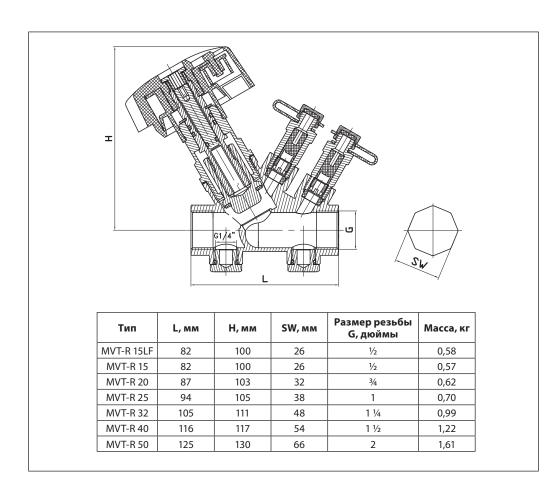


Таблица значений K_V при различных настройках клапана MVT-R

DN	15 LF	15	20	25	32	40	50
Код	003Z4040R	003Z4041R	003Z4042R	003Z4043R	003Z4044R	003Z4045R	003Z4046R
Настройка		Значение про	пускной спос	обности Kv пр	и заданной на	астройке, м³/ч	I
0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,1	0,04	0,01	0,03	0,04	0,26	0,41	0,46
0,2	0,17	0,09	0,20	0,27	0,60	0,90	0,99
0,3	0,20	0,17	0,34	0,55	0,93	1,06	1,43
0,4	0,24	0,25	0,38	0,77	1,08	1,17	1,67
0,5	0,27	0,32	0,42	0,85	1,22	1,30	1,93
0,6	0,31	0,37	0,47	0,93	1,35	1,44	2,19
0,7	0,34	0,42	0,51	1,01	1,49	1,58	2,44
0,8	0,37	0,47	0,55	1,09	1,61	1,72	2,68
0,9	0,41	0,52	0,60	1,15	1,73	1,84	2,91
1,0	0,44	0,57	0,64	1,21	1,83	1,95	3,13
1,1	0,46	0,60	0,68	1,26	1,93	2,06	3,36
1,2	0,48	0,63	0,72	1,30	2,05	2,17	3,61
1,3	0,51	0,66	0,76	1,34	2,19	2,30	3,89
1,4	0,53	0,69	0,80	1,38	2,35	2,44	4,19
1,5	0,55	0,72	0,84	1,42	2,49	2,59	4,52
1,6	0,57	0,75	0,88	1,46	2,69	2,76	4,87
1,7	0,59	0,77	0,93	1,50	2,90	2,94	5,25
1,8	0,62	0,79	0,97	1,54	3,14	3,13	5,68
1,9	0,64	0,81	1,02	1,59	3,43	3,33	6,16
2,0	0,66	0,83	1,07	1,66	3,70	3,54	6,68
2,1	0,67	0,85	1,11	1,74	3,94	3,75	7,23
2,2	0,69	0,87	1,15	1,82	4,16	3,98	7,80
2,3	0,70	0,90	1,19	1,89	4,38	4,22	8,38
2,4	0,72	0,94	1,23	1,97	4,61	4,47	8,95
2,5	0,73	0,98	1,27	2,05	4,85	4,73	9,51
2,6	0,74	1,02	1,31	2,14	5,10	4,99	10,10
2,7	0,76	1,06	1,35	2,22	5,39	5,25	10,67
2,8	0,77	1,10	1,41	2,34	5,64	5,52	11,24
2,9	0,79	1,14	1,47	2,45	5,89	5,79	11,81
3,0	0,80	1,18	1,52	2,55	6,17	6,07	12,39
3,1	0,81	1,22	1,58	2,66	6,40	6,35	12,94
3,2	0,82	1,26	1,64	2,78	6,65	6,63	13,46
3,3	0,84	1,30	1,70	2,90	6,87	6,91	13,99
3,4	0,85	1,35	1,76	3,00	7,10	7,19	14,48
3,5	0,86	1,41	1,83	3,10	7,34	7,47	14,94



Настройка (продолжение)

DN	15 LF	15	20	25	32	40	50
Код	003Z4040R	003Z4041R	003Z4042R	003Z4043R	003Z4044R	003Z4045R	003Z4046R
3,6	0,87	1,49	1,91	3,21	7,58	7,76	15,37
3,7	0,88	1,57	2,02	3,34	7,82	8,05	15,78
3,8	0,90	1,67	2,14	3,47	8,05	8,35	16,16
3,9	0,91	1,77	2,26	3,63	8,28	8,64	16,53
4,0	0,92	1,87	2,38	3,76	8,49	8,92	16,90
4,1	0,93	1,97	2,50	3,91	8,69	9,20	17,30
4,2	0,94	2,07	2,61	4,04	8,89	9,48	17,73
4,3	0,96	2,17	2,71	4,16	9,09	9,77	18,18
4,4	0,97	2,27	2,82	4,29	9,28	10,07	18,61
4,5	0,98	2,37	2,93	4,42	9,48	10,37	19,04
4,6	0,99	2,47	3,04	4,55	9,68	10,67	19,43
4,7	1,00	2,57	3,16	4,69	9,88	10,98	19,79
4,8	1,02	2,67	3,28	4,85	10,08	11,29	20,13
4,9	1,03	2,77	3,40	5,02	10,26	11,60	20,46
5,0	1,04	2,87	3,51	5,16	10,42	11,91	20,80
5,1	1,06	2,97	3,61	5,30	10,56	12,22	21,15
5,2	1,07	3,07	3,71	5,44	10,68	12,53	21,50
5,3	1,09	3,17	3,81	5,59	10,80	12,84	21,85
5,4	1,10	3,26	3,91	5,73	10,92	13,15	22,20
5,5	1,12	3,35	4,01	5,87	11,04	13,46	22,55
5,6	1,13	3,44	4,11	6,01	11,16	13,75	22,86
5,7	1,15	3,53	4,21	6,17	11,28	14,04	23,14
5,8	1,16	3,62	4,30	6,31	11,40	14,33	23,40
5,9	1,18	3,71	4,39	6,47	11,52	14,62	23,66
6,0	1,19	3,80	4,48	6,57	11,64	14,92	23,96
6,1	1,23	3,88	4,56	6,67	11,76	15,22	24,28
6,2	1,26	3,96	4,63	6,75	11,88	15,52	24,58
6,3	1,30	4,04	4,70	6,83	12,00	15,79	24,86
6,4	1,33	4,12	4,76	6,91	12,12	16,06	25,12
6,5	1,37	4,20	4,81	6,98	12,24	16,32	25,35
6,6	1,40	4,28	4,86	7,05	12,36	16,58	25,58
6,7	1,44	4,36	4,91	7,12	12,48	16,85	25,81
6,8	1,47	4,43	4,96	7,19	12,60	17,12	26,04
6,9	1,51	4,48	4,99	7,26	12,72	17,39	26,27
7,0	1,54	4,52	5,02	7,33	12,84	17,65	26,50
7,1	1,64	4,56	5,04	7,40	12,96	17,90	26,73
7,2	1,74	4,60	5,06	7,47	13,08	18,14	26,91
7,3	1,84	4,63	5,08	7,54	13,20	18,36	27,06
7,4	1,94	4,66	5,10	7,61	13,32	18,53	27,22
7,5	2,04	4,69	5,12	7,68	13,44	18,69	27,37
7,6	2,14	4,72	5,14	7,75	13,56	18,83	27,51
7,7	2,24	4,75	5,16	7,82	13,69	18,95	27,64
7,8	2,34	4,77	5,17	7,89	13,83	19,07	27,76
7,9	2,44	4,79	5,18	7,96	13,97	19,17	27,88
8,0 (Kvs)	2,54	4,81	5,19	8,03	14,11	19,27	28,00

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

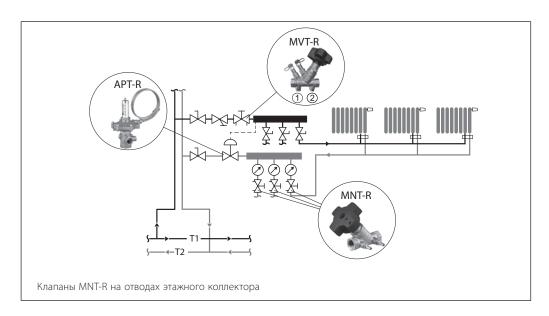
Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Ручной балансировочный клапан MNT-R DN15-50

Описание и область применения

Клапан MNT-R — это ручной балансировочный клапан, предназначенный для гидравлической балансировки систем отопления, тепло- и холодоснабжения, а также систем ГВС. MNT-R

помимо основной функции — настройки требуемой пропускной способности — имеет ряд дополнительных особенностей:

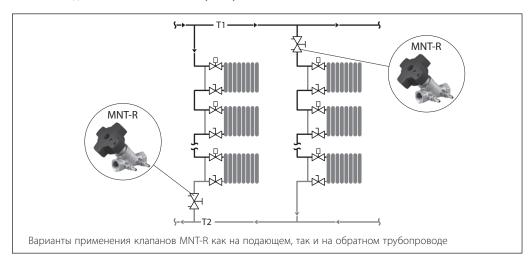

- простая настройка;
- 100% перекрытие потока;
- съемная и заменяемая настроечная рукоятка;
- оснащен двумя измерительными ниппелями.

Ручной балансировочный клапан MNT-R предназначен для применения в системах с постоянным расходом как основной тип балансировочной арматуры, в системах с переменным расходом в пару к автоматическим клапанам и для дополнительной увязки циркуляционных контуров. Клапан может быть установлен как на обратном, так и на подающем трубопроводе. Выпускается с DN = 15–50 мм и имеет внутреннюю резьбу.

Примеры применения

Применение клапана MNT-R в горизонтальной двухтрубной системе отопления

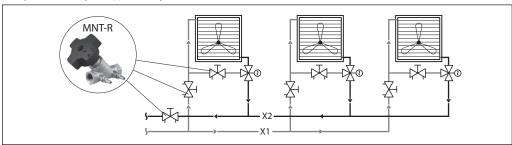
Клапаны MNT-R в этом случае устанавливаются на каждом квартирном отводе (на подающем или обратном трубопроводе).



Примеры применения *(продолжение)*

Применение в вертикальной однотрубной системе отопления

Клапаны MNT-R, как правило, устанавливаются на каждый стояк, обеспечивают увязку


циркуляционных колец в системе с постоянным расходом и могут быть установлены как на обратном, так и на подающем трубопроводе.

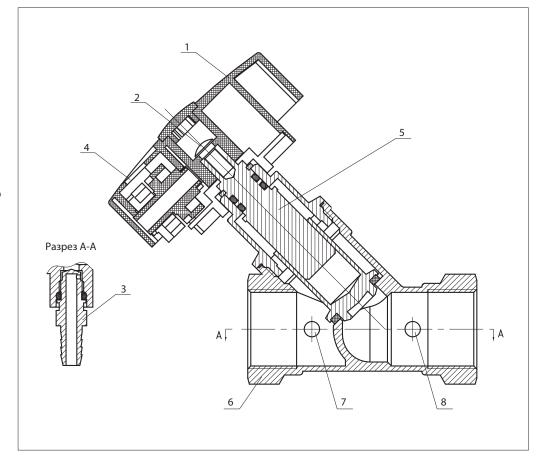
Применение в системе холодоснабжения с постоянным расходом

Клапаны MNT-R устанавливаются перед каждый узлом регулирования, а также перед каждой группой установок для обеспечения расчетного расхода. На перемычке клапан

MNT-R применяется для обеспечения постоянного расхода через узел регулирования при работе трехходового клапана, а также для обеспечения более плавной характеристики регулирования.

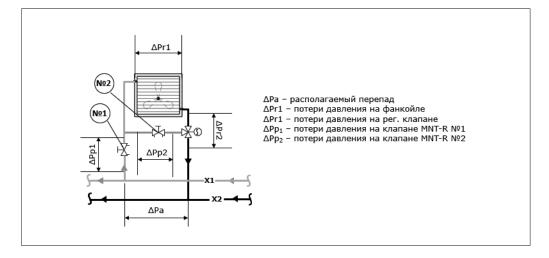
Номенклатура и кодовые номера для оформления заказа

Клапан MNT-R с внутренней резьбой


Эскиз	DN, mm	Пропускная способ- ность Kvs, м³/ч	Размер внутр. резьбы по ISO 7/1, дюймы	Кодовый номер
	15	5,13	Rp ½	003Z2331R
	20	5,96	Rp 3/4	003Z2332R
1.5	25	9,17	Rp 1	003Z2333R
	32	9,51	Rp 1¼	003Z2334R
ASS ASS	40	13	Rp 1½	003Z2335R
	50	14,4	R _p 2	003Z2351R

Технические характеристики

Номинальный диаметр, мм	15–50				
Макс. рабочее давление PN, бар	16				
Испытательное давление, бар	25				
Макс. перепад давления на клапане, бар	1,5				
Протечка при перекрытии	Без видимой протечки ISO5208				
Рабочая температура среды, °C	0120				
Температура транспортировки и хранения, °С	-4070				
Холодоноситель	Этиленгликоль, пропиленгликоль до 50 %				
Материалы и детали, контактирующие с водой					
Корпус клапана	Латунь				
Золотник	Латунь				
Уплотнения	EPDM				


Устройство

- 1. Настроечная рукоятка.
- 2. Винт фиксации рукоятки.
- 3. Измерительный ниппель стандартного типа.
- 4. Окно индикации значения настройки.
- 5. Шток клапана.
- 6. Корпус клапана.
- 7. Измерительный ниппель после седла (синий).
- 8. Измерительный ниппель до седла (красный).

Пример подбора клапана

Дано

Обвязка фанкойла системы холодоснабжения с постоянным расходом.

Расчетный расход через фанкойл (Q): 800 л/ч. Располагаемый напор (Δ Pa): 40 кПа.

Потери давления в фанкойле при расчетном расходе (Δ Pr1): 13 кПа.

Потери давления на регулирующем клапане при расчетном расходе (Δ Pr2): 15 кПа. Диаметр подводки к фанкойлу 20 мм.

Найти

Размер и настройку клапанов МNТ-R №1 и №2.

Решение

Часто диаметр ручных балансировочных клапанов принимается по диаметру трубопровода на котором он располагается, но в некоторых случаях при достаточно большом перепаде клапаны могут быть на 1–2 типоразмера меньше трубы. Это обусловлено требуемым значением пропускной способности.

Клапан №1 необходим для увязки фанкойла в общей гидравлической системе.

Расчетное значения необходимого значения потерь на клапане MNT-R №1 составят:

$$\Delta Pp1 = \Delta Pa - \Delta Pr1 - \Delta Pr2 = 40 - 13 - 15 = 12 \text{ k}\Pi a.$$

Расчетное значение пропускной способности на клапане MNT-R №1 составляет:

$$K_V = G (M^3/4)/\sqrt{\Delta P} (6ap) = 0.8/\sqrt{0.12} = 2.3 M^3/4.$$

Диаметр клапана MNT-R №1 принимаем по диаметру стояка 20 мм, настройка N=6,5 (см. таблицу K_V при различных настройках).

Клапан №2 необходим для сохранения постоянного расхода через фанкойл при закрытии трехходового клапана.

Расчетное значения необходимого значения потерь на клапане MNT-R №2 составят:

$$\Delta$$
Pp2 = Δ Pr1 = 13 κΠa

Расчетное значение пропускной способности на клапане MNT-R №1 составляет:

$$K_V = G (M^3/4)/\sqrt{\Delta P} (6ap) = 0.8/\sqrt{0.13} = 2.2 M^3/4.$$

Диаметр клапана MNT-R №1 принимаем по диаметру стояка 20 мм, настройка N=6,4 (см. таблицу K_V при различных настройках).

Монтаж

Перед установкой клапана трубопроводы системы должны быть промыты.

- Следует предусмотреть свободное пространство вокруг клапана для его установки на трубопровод.
- 2. Стрелка на корпусе клапана должна совпадать с направлением движения среды.
- 3. Рукоятка может быть демонтирована. Для этого необходимо открутить винт 4 с помощью крестовой отвертки.

Настройка

Настройка производится с помощью рукоятки без использования дополнительных инструментов. Вращение рукоятки по часовой стрелке уменьшает значение пропускной способности, против часовой увеличивает. На рукоятке 1 указаны стрелки и символы «+» и «-» для более удобного понимания направления вращения. При вращении рукоятки в окне 2 отображаются целые значения настройки, в окне 3 десятые. Значение 0 означает полное закрытие клапана. С помощью винта 4 можно ослабить крепление рукоятки крестовой отверткой для ее демонтажа.

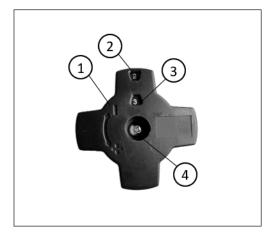
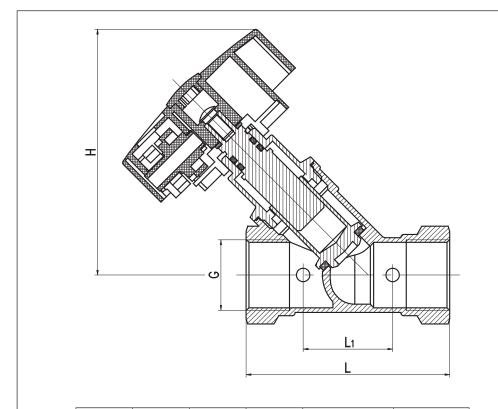


Таблица значений K_V при различных настройках клапана MNT-R

DN	15	20	25	32	40	50
Настройка			K	v		
0	0	0	0	0	0	0
0,1	0,04	0,03	0	0,20	0,25	0,3
0,2	0,17	0,1	0,12	0,25	0,3	0,35
0,3	0,32	0,16	0,28	0,35	0,34	0,39
0,4	0,43	0,26	0,5	0,45	0,38	0,44
0,5	0,49	0,31	0,61	0,49	0,42	0,49
0,6	0,51	0,32	0,61	0,51	0,46	0,53
0,7	0,53	0,32	0,63	0,53	0,5	0,58
0,8	0,55	0,35	0,66	0,55	0,54	0,63
0,9	0,57	0,35	0,67	0,57	0,57	0,67
1	0,59	0,36	0,69	0,63	0,67	0,72
1,1	0,61	0,38	0,72	0,66	0,7	0,8
1,2	0,62	0,39	0,75	0,68	0,72	0,88
1,3	0,64	0,4	0,77	0,71	0,75	0,97
1,4	0,66	0,41	0,8	0,74	0,78	1,05
1,5	0,68	0,43	0,83	0,77	0,81	1,13
1,6	0,7	0,45	0,85	0,79	0,83	1,21
1,7	0,73	0,47	0,88	0,82	0,86	1,29
1,8	0,74	0,49	0,9	0,85	0,89	1,38
1,9	0,76	0,54	0,93	0,87	0,91	1,46
2	0,78	0,56	0,96	0,90	0,94	1,54
2,1	0,81	0,58	0,99	0,93	0,97	1,63
2,2	0,84	0,61	1,01	0,96	1	1,72
2,3	0,86	0,63	1,04	0,99	1,02	1,81
2,4	0,88	0,65	1,06	1,02	1,05	1,9
2,5	0,91	0,66	1,09	1,05	1,08	2
2,6	0,93	0,68	1,12	1,09	1,11	2,09
2,7	0,95	0,7	1,15	1,12	1,14	2,18
2,8	0,97	0,72	1,17	1,15	1,16	2,27
2,9	0,99	0,74	1,2	1,18	1,19	2,36
3	1	0,75	1,23	1,21	1,22	2,45
3,1	1,02	0,77	1,25	1,23	1,25	2,62
3,2	1,04	0,79	1,28	1,26	1,29	2,79
3,3	1,05	0,81	1,3	1,28	1,32	2,97
3,4	1,08	0,83	1,33	1,30	1,35	3,14
3,5	1,1	0,85	1,35	1,33	1,39	3,31
3,6	1,12	0,89	1,37	1,35	1,42	3,48
3,7	1,14	0,89	1,4	1,37	1,45	3,65
3,8	1,15	0,91	1,43	1,39	1,48	3,83
3,9	1,16	0,93	1,45	1,42	1,52	4
4	1,18	0,95	1,48	1,44	1,55	4,17
4,1	1,19	0,98	1,5	1,47	1,59	4,46
4,2	1,2	1	1,52	1,49	1,64	4,76
4,3	1,21	1,01	1,55	1,52	1,68	5,06
4,4	1,22	1,03	1,57	1,54	1,73	5,35



Настройка (продолжение)

DN	15	20	25	32	40	50
Настройка			K	v		
4,5	1,24	1,05	1,6	1,57	1,77	5,65
4,6	1,26	1,07	1,62	1,59	1,81	5,94
4,7	1,26	1,09	1,65	1,62	1,86	6,24
4,8	1,28	1,11	1,68	1,64	1,9	6,53
4,9	1,3	1,12	1,71	1,67	1,95	6,83
5	1,33	1,14	1,75	1,69	1,99	7,12
5,1	1,36	1,16	1,79	1,79	2,16	7,37
5,2	1,41	1,19	1,83	1,88	2,33	7,63
5,3	1,45	1,22	1,9	1,98	2,51	7,88
5,4	1,49	1,26	1,96	2,07	2,68	8,13
5,5	1,54	1,32	2,04	2,07	2,85	8,39
5,6	1,61	1,4	2,13	2,17	3,02	8,64
5,7	1,61	1,4	2,13		3,19	8,89
				2,36		
5,8	1,77	1,6	2,36	2,46	3,37	9,14
5,9	1,86	1,69	2,5	2,55	3,54	9,4
6	1,96	1,78	2,64	2,65	3,71	9,65
6,1	2,06	1,88	2,8	2,84	4,03	9,83
6,2	2,16	1,99	2,95	3,04	4,34	10
6,3	2,26	2,11	3,13	3,23	4,66	10,18
6,4	2,35	2,22	3,31	3,42	4,97	10,35
6,5	2,49	2,36	3,49	3,62	5,29	10,53
6,6	2,61	2,5	3,67	3,81	5,6	10,7
6,7	2,71	2,66	3,88	4,00	5,92	10,88
6,8	2,8	2,81	4,08	4,19	6,23	11,05
6,9	2,95	2,85	4,28	4,39	6,55	11,23
7	3,09	2,8	4,47	4,58	6,86	11,4
7,1	3,28	2,87	4,67	4,82	7,17	11,49
7,2	3,4	2,95	4,87	5,05	7,48	11,58
7,3	3,52	3,02	5,07	5,29	7,78	11,67
7,4	3,6	3,13	5,27	5,53	8,09	11,76
7,5	3,63	3,37	5,49	5,77	8,4	11,85
7,6	3,74	3,5	5,7	6,00	8,71	11,94
7,7	3,85	3,6	5,9	6,24	9,02	12,03
7,8	3,98	3,72	6,1	6,48	9,32	12,12
7,9	4,17	3,87	6,29	6,71	9,63	12,21
8	4,32	3,98	6,49	6,95	9,94	12,3
8,1	4,38	4,13	6,67	7,11	10,13	12,39
8,2	4,47	4,23	6,86	7,26	10,33	12,48
8,3	4,56	4,39	7,06	7,42	10,52	12,57
8,4	4,63	4,46	7,26	7,57	10,71	12,66
8,5	4,69	4,6	7,43	7,73	10,91	12,75
8,6	4,75	4,7	7,61	7,89	11,1	12,84
8,7	4,78	4,76	7,77	8,04	11,29	12,93
8,8	4,81	4,96	7,92	8,20	11,48	13,02
8,9	4,88	5,05	8,06	8,35	11,68	13,11
9	4,89	5,17	8,2	8,51	11,87	13,11
9,1	4,09	5,16	8,31	8,60	12	13,35
9,2	4,99	5,35	8,41	8,70	12,13	13,49
			1			
9,3	5,01	5,48	8,56 9.71	8,79	12,27	13,64
9,4	5,04	5,52	8,71	8,89	12,4	13,79
9,5	5,05	5,47	8,81	8,98	12,53	13,93
9,6	5,08	5,66	8,91	9,08	12,66	14,08
9,7	5,13	5,73 5,82	9,02 9,13	9,17 9,27	12,79 12,93	14,23
9,8	5,13					14,37

Габаритные и присоединительные размеры

Тип	L, MM	Н, мм	SW, mm	Размер резьбы, дюймы	Масса, кг	
MNT-R 15	70	33	87	Rp ½	0,38	
MNT-R 20	75	33	88	Rp ¾	0,40	
MNT-R 25	82	43	94	Rp 1	0,55	
MNT-R 32	93	39	97	Rp 1¼	0,70	
MNT-R 40	100	46	106	Rp 1½	0,80	
MNT-R 50	103	46	114	Rp 2	1,22	

Центральный офис • Компания «Ридан»

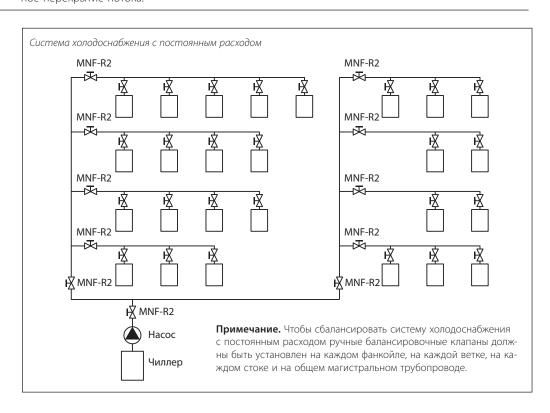
Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Ручные балансировочные клапаны MNF-R2 фланцевые DN15-400 PN16,25

Описание и область применения


Ручной балансировочный клапан MNF-R2 предназначен гидравлической балансировки систем тепло- и холодоснабжения. Клапан позволяет менять и фиксировать пропускную способность, имеет удобный индикатор настройки.

Клапан оснащен герметичным затвором и игольчатыми измерительными ниппелями, а также может одновременно использоваться в качестве запорной арматуры, обеспечивая полное перекрытие потока.

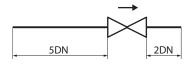
Основные характеристики

- DN 15-400;
- Диапазон рабочих температур: –10...130 °С (PN16), –10...150 °С (PN25);
- Клапаны устанавливаются на подающем или обратном трубопроводе.

Пример применения

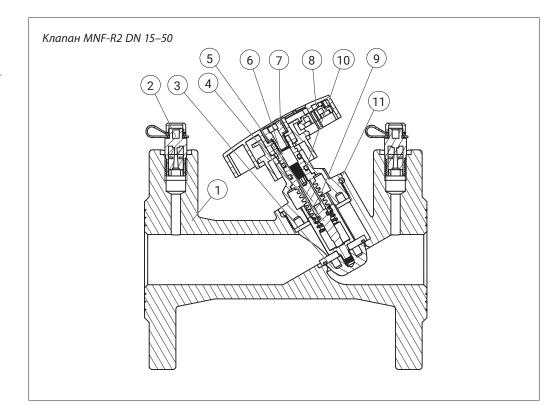
Номенклатура и кодовые номера для заказа

Эскиз	DN, mm	Пропускная способность Kvs, м³/ч	Макс. температура среды, °С	Класс давления	Кодовый номер
	15		003Z1085R		
	20	6,3			003Z1086R
	25	9,0			003Z1087R
_	32	15,5			003Z1088R
	40	32,3			003Z1089R
	50	53,8			003Z1061R
	65	93,4			003Z1062R
	80	122,3	130	PN16	003Z1063R
	100	200,0	150	PINIO	003Z1064R
	125	304,4			003Z1065R
	150	400,8			003Z1066R
_	200	122,3 200,0 304,4			003Z1140R
	250	1238			003Z1141R
	300	1662	1		003Z1142R
	350	2359			003Z1143R
	400	3516			003Z1144R
	15	3,1			003Z1092R
	20	6,3			003Z1093R
	25	9,0			003Z1094R
_	32	15,5			003Z1095R
	40	32,3			003Z1096R
	50	53,8			003Z1070R
	65	93,4]		003Z1071R
	80	122,3	150	PN25	003Z1072R
	100	200,0	130	FINZO	003Z1073R
	125	304,4			003Z1074R
	150	400,8]		003Z1075R
	200	872			003Z1145R
	250	1238			003Z1146R
	300	1662			003Z1147R
	350	2359]		003Z1148R
" "	400	3516]		003Z1149R

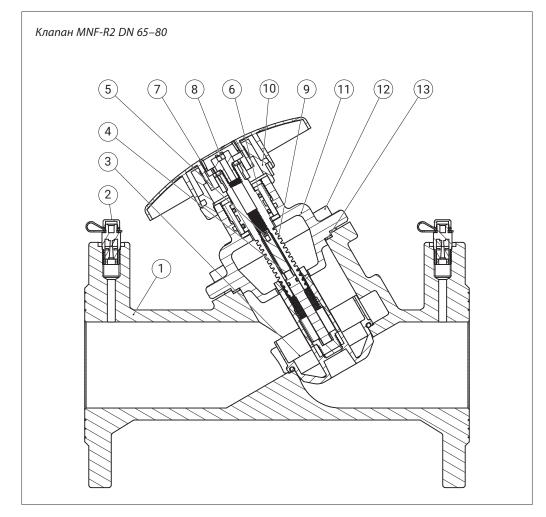

Технические характеристики

Условный проход DN, мм	15	20	25	32	40	50	65	80	100	125	150	200	250	300	350	400
Пропускная способность Kvs, м³/ч	3,1	6,3	9,0	15,5	32,3	53,8	93,4	122,3	200,0	304,4		872	1238	1662	2359	3516
Класс давления		PN 16														
Максимальный перепад давления на клапане ΔР _{кл} , бар		1,5														
Протечка		Класс А в соответствии с ISO 5208														
Среда	Теплотехническая вода, пропилен- и этиленгликоль с концентрацией до 50%															
Максимальная температура среды, °C		130														
Присоединение		Фланцевое в соответствии с ГОСТ 33259-1														
Масса, кг	2,3	2,9	3,8	5,6	7,2	9,4	17	21	32	44	56	99	154	248	375	526
Материал корпуса					Чугун	i EN-GJ	L250(C	G25)				Ч	угун EN	-GJL400-	-15(GGG4	10)
Материал уплотнений		EPDM														
Материал конуса				C	W617					жавею аль/CW			Ковк	ий чугун	+PTFE	
Условный проход DN, мм	15	20	25	32	40	50	65	80	100	125	150	200	250	300	350	400
Пропускная способность Kvs, $m^3/4$	3,1	6,3	9,0	15,5	32,3	53,8	93,4	122,3	200,0	304,4	400,8	872	1238	1662	2359	3516
Класс давления									PN 2	5						
Максимальный перепад давления на клапане ΔР _{кл} , бар									2,0							
Протечка							Кла	сс Авс	ответс	твии с	SO 5208	3				
Среда				Теплот	гехнич	еская в	вода, п	ропиле	н- и эти	ленгли	коль с к	онцент	грацией	до 50%		
Максимальная температура среды, °С									150)						
Присоединение						Ф	ланце	вое в сс	ответс	твии с Г	OCT 332	259-1	,			
Масса, кг	2,3	3,0	3,8	5,6	7,2	9,4	17	21	33	44	56	108	173	279	421	604
Материал корпуса							ι	Іугун ЕІ	N-GJL40	0-15(GC	G40)					
Материал уплотнений									EPDI	M						
Материал конуса	CW617 Нержавеющая сталь/CW617 Ковкий чугун+РТFE															

Монтаж

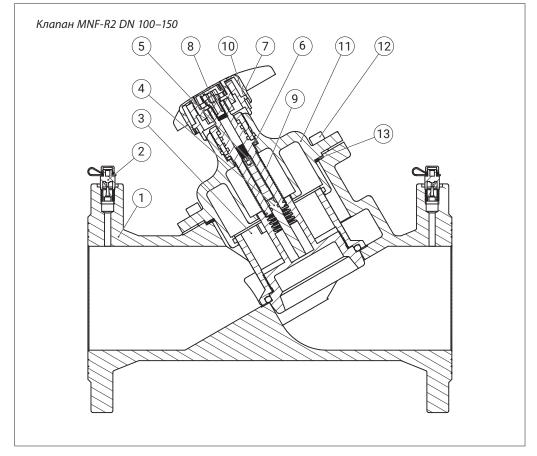

Клапан следует устанавливать так, чтобы стрелка на его корпусе совпадала с направлением движения перемещаемой среды. Для предотвращения возникновения турбулентности потока, которая влияет на точность настройки клапана, рекомендуется обеспечивать указанные на рисунке размеры прямых участков трубопровода до и после клапана (DN — диаметр клапана).

При невыполнении этих требований погрешность настройки клапана на необходимый расход может достигнуть 20 %.

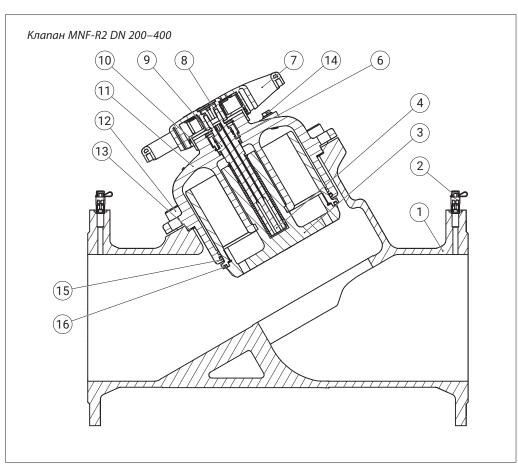


Устройство

- 1. Корпус.
- 2. Измерительный ниппель.
- 3. Конус.
- 4. Шток.
- 5. Штифт.
- 6. Кольцевое уплотнение.
- 7. Рукоятка.
- 8. Винт.
- 9. Шпиндель.
- 10. Сальник.
- 11. Крышка корпуса.



- 1. Корпус.
- 2. Измерительный ниппель.
- 3. Конус.
- 4. Шток.
- 5. Штифт.
- 6. Кольцевое уплотнение.
- 7. Рукоятка.
- 8. Винт.
- 9. Шпиндель.
- 10. Сальник.
- 11. Крышка корпуса.
- 12. Болт.
- 13. Прокладка.



Устройство (продолжение)

- 1. Корпус.
- 2. Измерительный ниппель.
- 3. Конус.
- 4. Шток.
- 5. Штифт.
- 6. Кольцевое уплотнение.
- 7. Рукоятка.
- 8. Винт.
- 9. Шпиндель.
- 10. Сальник.
- 11. Крышка корпуса.
- 12. Болт.
- 13. Прокладка.

- 1. Корпус.
- 2. Измерительный ниппель.
- 3. Конус.
- 4. Шток.
- 5. Штифт.
- 6. Кольцевое уплотнение.
- 7. Рукоятка.
- 8. Винт.
- 9. Шпиндель.
- 10. Сальник.
- 11. Крышка корпуса.
- 12. Болт.
- 13. Прокладка.
- 14. Болт.
- 15. Кольцевое уплотнение.
- 16. Кольцевое уплотнение.

Определение настроек клапанов при использовании водного раствора этиленгликоля

Расчет корректирующего коэффициента

Химическая формула этиленгликоля: $C_2H_6O_2$. Плотность при 20 °C:

$$\rho_{\text{воды}} = 1 \text{ кг/дм}^3,$$

 $\rho_{\text{гликоля}} = 1,338 \text{ кг/дм}^3.$

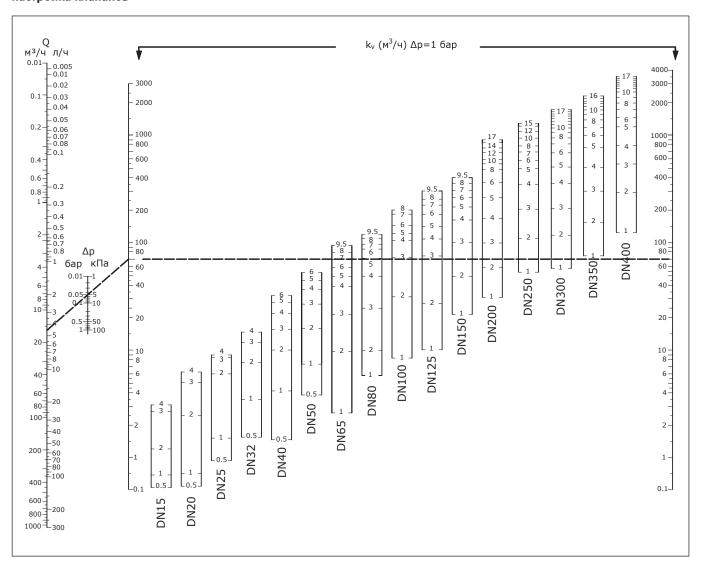
G -	G _{воды}	
Смеси —	$\sqrt{$ Доля воды \cdot $\rho_{\text{воды}}$ + Доля гликоля	 ρ_{гликоля}

Содержание этиленглико- ля в воде, %	0	10	20	30	40	50	60	70	80	90	100
Корректирующий коэффициент	1,0	0,983	0,968	0,953	0,939	0,925	0,912	0,899	0,887	0,876	0,864

Пример

Определить фактический расход 30 % раствора этиленгликоля в воде, проходящего через клапан.

MNF-R2 DN65, настроенный на позицию «4», при измеренном на нем перепаде давления 0,6 бар.


По диаграмме (далее в техописании) расход воды, проходящей через клапан, по условию примера составляет 30 м³/ч.

Используя корректирующий коэффициент, рассчитывается расход раствора этиленгликоля:

$$G_{\text{CMPCM}} = 30 \text{ m}^3/\text{u} \cdot 0.953 = 28.6 \text{ m}^3/\text{u}.$$

Данный расчет применим ко всем типам клапанов.

Выбор диаметра и настройка клапанов

Выбор диаметра и настройка клапанов (продолжение)

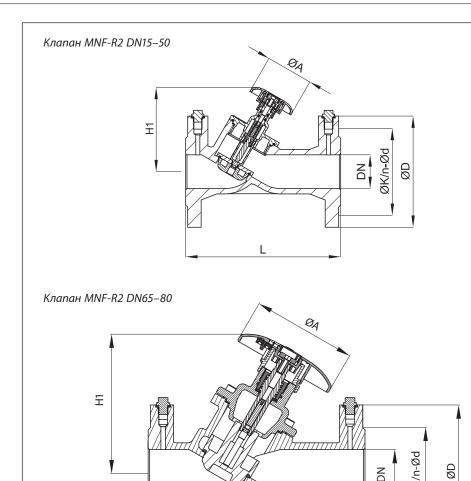
Пример

Для клапана MNF-R2 DN65 выбрать настрой-ку при расходе воды 16 м 3 /ч и перепаде давления на нем 5 кПа.

Вычисление настройки клапана

На диаграмме линией соединяются точки значения расхода 16 м³/ч и перепада давления 5 кПа, которая продолжается до пересечения со шкалой K_v . Затем от точки на шкале K_v проводится горизонтальная линия, которая пересекает шкалы со значениями настроек клапанов, допускаемых для выбора диаметров.

В данном случае для клапана DN65 настройка равна 7,0.


Настройка

Значения Кv для различных настроек клапана MNF-R2

		Диаметр клапана, DN														
N	15	20	25	32	40	50	65	80	100	125	150	200	250	300	350	400
		Значения Kv при различных настройках, м³/ч														
1	0,45	0,56	1,62	3,77	4,75	7,4	8,54	5,82	8,3	10,32	21,4	30,8	53,6	57,4	75	124
2	1,28	2,45	6,03	9,67	11,56	15,8	11,4	9,91	32,4	35,41	48,5	58,7	109	117	154	292
3	2,75	5,15	8,35	13,63	16,43	26,7	18,5	24,52	72,9	73,3	99,8	100	207	208	300	533
4	3,19	6,24	9,03	16,38	22,15	36,9	38,3	48,51	107,2	114,9	162	170	349	356	498	819
5	-	-	-	-	28,18	46,2	52,5	71,32	128,2	150,5	214	262	490	503	768	1192
6	-	-	-	-	32,36	53,8	61,9	87,02	152,8	185,2	260,9	361	580	683	991	1445
7	-	-	-	-	-	-	70,9	96,43	180	225,1	304,1	423	693	826	1177	1720
8	-	-	-	-	-	-	78,3	109,3	200	261,1	354,6	481	791	940	1382	1983
9	-	-	-	-	-	-	89,8	115,2	-	294,2	384,6	542	877	1055	1559	2223
9,5	-	-	-	-	-	-	93,5	122,1	-	304,4	400,8	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-	-	-	597	942	1161	1711	2482
11	-	-	-	-	-	-	-	-	-	-	-	647	1012	1260	1848	2682
12	-	-	-	-	-	-	-	-	-	-	-	684	1076	1343	1952	2848
13	-	-	-	-	-	-	-	-	-	-	-	722	1140	1423	2059	2973
14	-	-	-	-	-	-	-	-	-	-	-	763	1211	1500	2182	3093
15	-	-	-	-	-	-	-	-	-	-	-	807	1238	1568	2305	3241
16	-	-	-	-	-	-	-	-	-	-	-	850	-	1643	2359	3359
17	-	-	-	-	-	-	-	-	-	-	-	874	-	1662	-	3516

Габаритные и присоединительные размеры

					DN16			DNOE		
DN	L	ØA	H1		PN16		PN25			
DIN				ØD	ØK	nרd	ØD	ØК	nרd	
	MM									
15	130	78	80	95	65	4 x 14	95	65	4 x 14	
20	150	78	90	105	75	4 x 14	105	75	4 x 14	
25	160	78	105	115	85	4 x 14	115	85	4 x 14	
32	180	78	110	140	100	4 x 19	140	100	4 x 19	
40	200	78	125	150	110	4 x 19	150	110	4 x 19	
50	230	78	125	165	125	4 x 19	165	125	4 x 19	
65	290	140	187	185	145	4 x 19	185	145	8 x 19	
80	310	140	205	200	160	8 x 19	200	160	8 x 19	

DN Ø K/n - Ød

Габаритные и присоединительные размеры (продолжение)

	L	L ØA			PN16			PN25		
DN				ØD	øк	nרd	ØD	ØK	nרd	
	ММ									
100	350	140	222	220	180	8 x 19	235	190	8 x 23	
125	400	140	251	250	210	8 x 19	270	220	8 x 28	
150	480	140	247	285	240	8 x 19	300	250	8 x 28	
200	600	360	721	340	295	12 x 23	360	310	12 x 28	
250	730	400	808	405	355	12 x 28	425	370	12 x 31	
300	850	400	855	460	410	12 x 28	485	430	16 x 31	
350	980	500	910	520	470	16 x 28	555	490	16 x 34	
400	1100	500	960	580	525	16 x 31	620	550	16 x 37	

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Измерительный прибор Т650

Описание и область применения

Измерительный прибор Т650 предназначен для определения расхода, проходящего через компоненты (балансировочные клапаны или измерительные диафрагмы) гидравлической системы. Прибор расчитывает расход, исходя из измеренного перепада давления и вносит необходимые поправочные коэффициенты в случае, если в качестве среды используются водогликолевые смеси.

При помощи Т650 расход может быть измерен на каждом ответвлении, что позволяет выполнить балансировку всей системы.

Прибор Т650 предназначен для выполнения гидравлической балансировки в системах отопления, тепло- и холодоснабжения, а также в системах горячего водоснабжения. С его помощью можно измерять статическое давление, перепад давления и расход.

Состав прибора Т650

- Основной измерительный блок;
- Измерительные иглы и шланги;
- Смартфон для вывода результатов на экран и их анализа (не входит в комплект поставки).

Благодаря жесткому каркасу измерительный блок отличается повышенной прочностью. Внутри измерительного блока расположен дифференциальный манометр со встроенным преобразователем перепада давления для точной обработки цифровых данных. Соединение между измерительным прибором и смартфоном осуществляется по протоколу Bluetooth.

Прибор T650 может подключаться к устройствам с ОС ANDROID или iOS через приложение, загруженное из PLAY STORE (для Android) или APPLE STORE (для iOS).

Особенности

- Точное измерение давления при помощи встроенного датчика перепада и 24-битной обработки данных.
- Цифровая компенсация воздействий температуры и нелинейности датчика давления.
- Коррекция расчета расхода на основе характеристик водогликолевых смесей.
- Совместимость с устройствами Android (версия 7.0 и выше) и iOS.
- Беспроводная передача данных с измерительного прибора на мобильное устройство с помощью технологии Bluetooth Low Energy.

- Удобный интерфейс.
- Простой выбор балансировочного клапана из иллюстрированного меню.
- Запись измеренных значений с возможностью сохранения до 2000 записей.
- Возможность использования в качестве регистратора данных.
- Высокопрочная конструкция, которая выдерживает падение с высоты двух метров.

Применение

Прибор Т650 должен быть подключен к верхней и нижней стороне клапана с помощью соответствующих игл, соединителей и шлангов. Если необходимо выполнить измерения в условиях высокого статического давления, рекомендуется сначала подключить красный шланг, чтобы защитить мембрану внутри датчика давления.

Если синий шланг будет подключен первым, это может привести к повреждению датчика. Давление и расход можно считывать на смартфоне с OC Android/iOS.

Процедура измерения:

- 1. Выберите производителя.
- 2. Выберите тип клапана.
- 3. Выберите размер клапана.
- 4. Выберите предварительные настройки.
- 5. Подсоедините измерительный прибор к клапану.
- 6. Обнулите настройки.
- 7. Измерьте расход.

Номенклатура и кодовые номера для оформления заказа

Тип	Давление, бар	Кодовый номер
T650	10	003Z8261R

Технические характеристики

Рабочее давление, кПа (бар)	0–2000 (0–20)
Номинальное давление	PN20
Макс. избыточное давление	120 % от номинального давления: 2400 кПа ~24 бар
Отклонение, вызванное погрешностью, нелиней- ностью и гистерезисом	0,15 % от диапазона
Отклонение в диапазоне давления от 0 до 5 кПа после выставления нуля давления	± 100 Πa
Температурная погрешность	0,25 % от диапазона
Температура рабочей среды ¹⁾ , °С	От –5 до +90
Температура окружающего воздуха, °С	От –5 до +50
Температура хранения, °С	От –5 до +50
Влажность окружающей среды, %	95, без образования конденсата
Источник питания	Щелочные батареи ААА или аккумуляторы NiMH
Время работы	Максимально 45 часов
Энергопотребление, мА	20
Беспроводная передача данных	Bluetooth Low Energy 5,0
Размеры Ш х В х Г, мм	180 x 80 x 52
Масса, г	440
Класс защиты	IP65
Срок действия калибровки	24 месяца

¹⁾ Измеряется на концах измерительных шлангов длиной 1,5 м. Во время процедуры выставления нуля давления через гидравлические части PFM 1000 проходит горячая вода. Максимальная длительность этой процедуры, когда температура среды превышает 50 °C, составляет 10 секунд.

Центральный офис • Компания «Ридан»

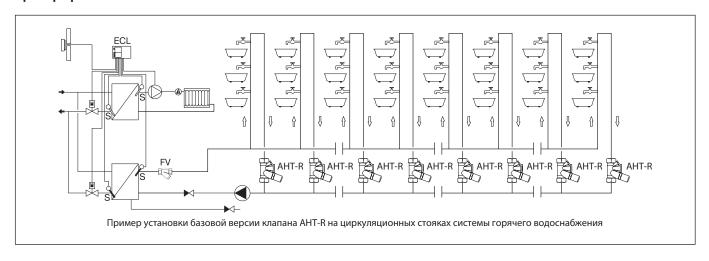
Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Термостатический балансировочный клапан АНТ-R

Описание



Термостатический балансировочный клапан АНТ-R — регулятор температуры прямого действия, предназначен для стабилизации температуры и минимизации расхода воды в циркуляционных стояках систем горячего водоснабжения (ГВС).

Клапан АНТ-R имеет термоэлемент, который может быть настроен на поддержание температуры воды в циркуляционном стояке системы ГВС в диапазоне от 30 до 65 °C.

AHT-R обеспечивает экономию воды, исключая ее слив через водоразборные краны для достижения требуемой температуры.

Пример применения

Устройсктво

Работа клапана АНТ-R

АНТ-R — пропорциональный регулятор температуры прямого действия. Термоэлемент (4) (рис. Устройство базовой версии клапана АНТ-R) при изменении температуры воды воздействует на конус клапана (3).

Когда температура воды повышается сверх установленного на регуляторе значения, термочувствительное вещество в термоэлементе расширяется и перемещает конус клапана в сторону закрытия, что приводит к сокращению циркуляции воды через стояк, вплоть до полного прекращения.

При снижении температуры происходит обратный процесс: термоэлемент открывает клапан и расход воды в стояке увеличивается. Клапан уравновешивается, когда температура воды соответствует заданной. Если температура воды будет свыше заданного значения на 5 °C, клапан АНТ-R полностью закроется.

Характеристика регулирования балансировочного клапана АНТ-R представлена на соответствующем рисунке. Защитная пружина (2) предотвращает повреждение термоэлемента при существенном повышении температуры сверх заданного значения.

Технические характеристики

Условное давление: PN10

Испытательное давление Ри: 16 бар.

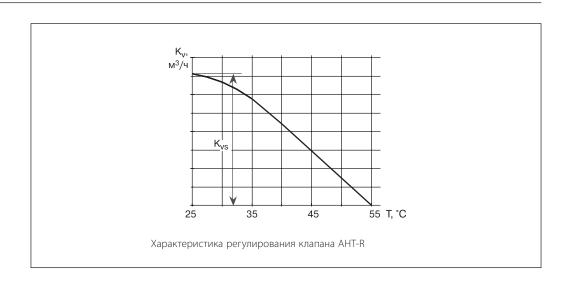
Максимальная температура горячей воды Тмакс.: 100 °C.

Пропускная способность Kvs:

- клапана DN = 15 мм: 1,7 м 3 /ч,
- клапана DN = 20 мм: $2,2 \text{ м}^3/\text{ч}$.
- клапана DN = 25 мм: 3,1 м 3 /ч.

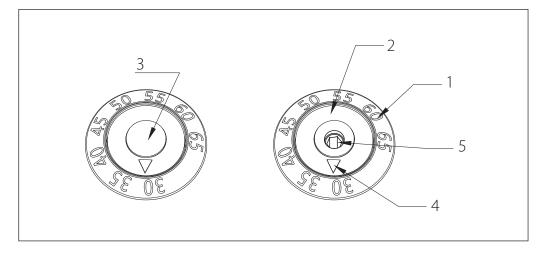
Гистерезис: 2,0 К.

Материал и детали, контактирующие с перемещаемой средой


Металлические элементы: латунь CW602N.

Уплотнения: EPDM.

Пружина: нержавеющая сталь.


Конус: пластик РОМ.

Характеристика регулирования

Настройка

Диапазон настройки АНТ-R: от 30 до 65 °C. Заводская настройка: 60 °C. Для того чтобы АНТ-R настроить на требуемую температуру, необходимо:

- удалить пластмассовую заглушку (3) на торце термоэлемента, подцепив ее отверткой;
- повернуть винт настройки температуры (5) шестигранным 3-мм штифтовым ключом так, чтобы метка (4) на кольце настройки (2) совпала со значением температуры на шкале (1);
- поставить на место заглушку настроечного винта (3).

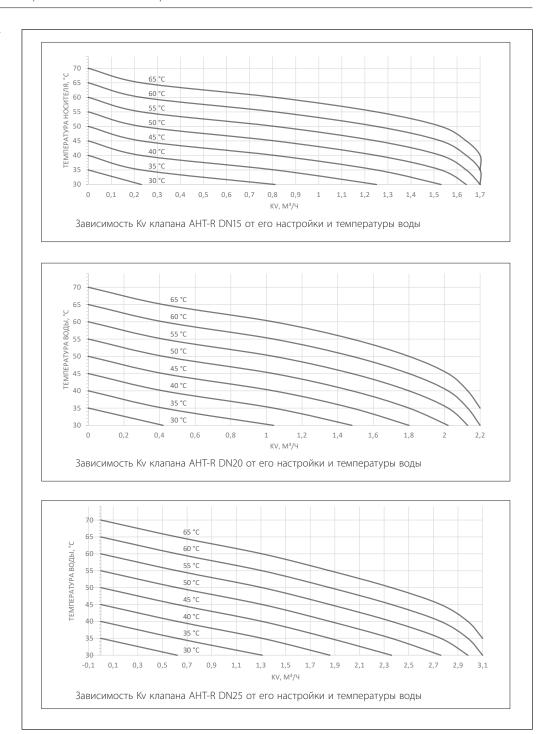
Настройка клапанов АНТ-R должна быть выбрана исходя из тепло-гидравлического расчета, в ходе которого должны быть определены циркуляционные расхода, остывание воды в подающем и циркуляционных трубопровода.

В случае отсутствия расчета первоначальная настройка может быть выбрана 60 °С с дальнейшей коррекцией по фактической температуре

у последнего потребителя на регулируемом стояке.

Шкала клапана составлена таким образом, чтобы настройка клапана соответствовало температуре у последнего потребителя.

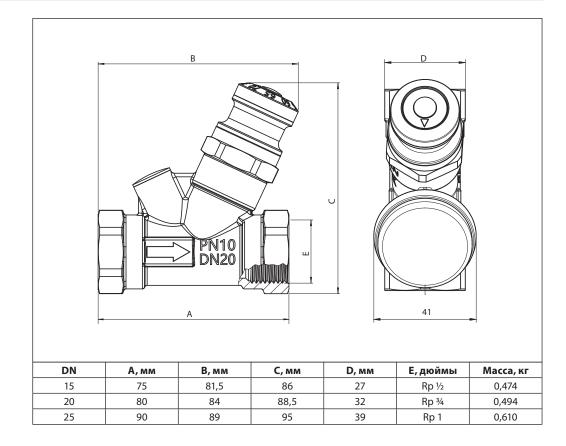
Например, при установке клапана сразу после последнего потребителя и настройке клапана на 60 °С, температура в трубопроводе и у потребителя будет составлять около 60 °С. В случае же установки клапана в подвале при нижнем розливе ГВС при настройке клапана на 60 °С, температура у потребителя будет составлять около 60 °С, а температура в трубопроводе (которую будет показывать термометр) будет составлять около 55 °С.


Разница между значением настройки и фактической температурой в трубопроводе зависит от требуемой величины циркуляционного расхода. Чем выше требуемый расход, тем эта разница выше.

Расходные характеристики АНТ

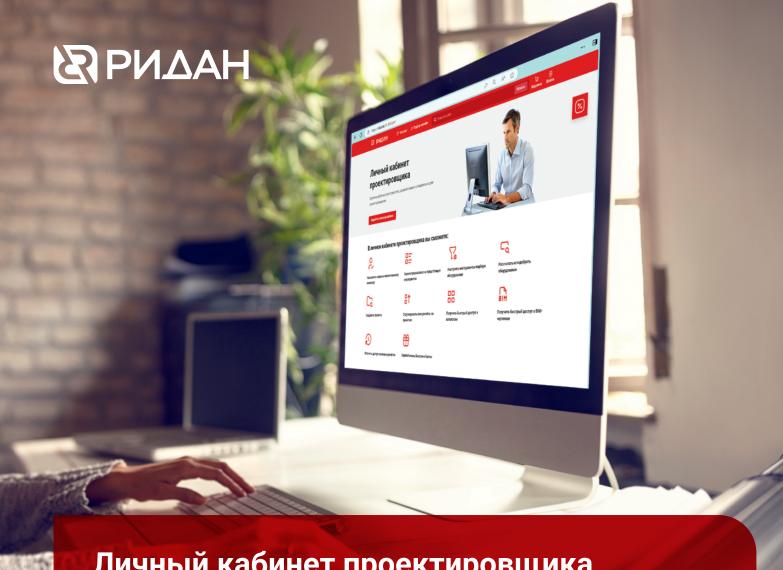
		Кv, м³/ч								
65	60	55	50	45	40	35	30	DN 15	DN 20	DN 25
70	65	60	55	50	45	40	35	0	0	0
65	60	55	50	45	40	35	30	0,23	0,42	0,62
60	55	50	45	40	35	30	_	0,81	1,04	1,31
55	50	45	40	35	30	_	_	1,25	1,48	1,86
50	45	40	35	30	_	_	_	1,53	1,8	2,36
45	40	35	30	_	_	_	_	1,64	2,02	2,76
40	35	30	_	_	_	_	_	1,7	2,13	2,98
35	30	_	_	_	_	_	_	1,7	2,2	3,1

Расходные характеристи- ки АНТ (продолжение)


Номенклатура и кодовые номера для заказа

DN	Кодовый номер
15	003Z1525R
20	003Z1530R
25	003Z1535R

Габаритные и присоединительные размеры



Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Личный кабинет проектировщика

Удобное рабочее пространство, созданное специально для проектировщиков

Плагин DCAD

Расчёт и проектирование различных систем

Обучение

Семинары и вебинары с экспертами отрасли

Инструменты

Подбор теплообменников и другого оборудования

Форум Community

Актуальные вопросы и ответы на нашем форуме

Компания «Ридан» • Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217.

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки в этом материале являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены. RC.HE.03.06