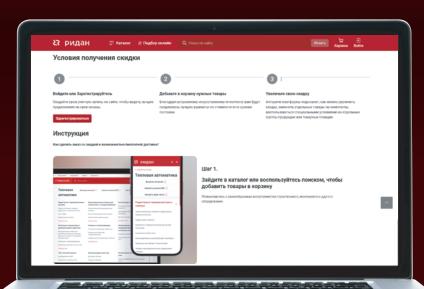

30 лет производим в России тепловую автоматику

Регулирующая арматура и контроллеры Ридан


Технический каталог. Ноябрь 2025

Найдем продавца с лучшими ценами В корзине будет отображена фактическая стоимость товаров без скрытых комиссий. Больше заказ — лучше скидка Гарантируем своевременное выставление счета от дистрибьютора по вашему заказу. В случае отсутствия каких-либо позиций на складе, предложим варианты замены

Оперативно соберем и отправим заказ. Вам будет доступна вся информация о статусе и сроках доставки

Заказывайте по лучшей цене с бесплатной доставкой на **ridan.ru**

Регулирующая арматура и контроллеры Ридан

Каталог

- Гидравлические регуляторы давления и температуры прямого действия
- Клапаны регулирующие седельные
- Клапаны регулирующие поворотные и двухпозиционные
- Редукторные электроприводы с импульсным и аналоговым управлением
- Контроллеры серии ECL

Настоящий каталог «Регулирующая арматура и контроллеры Ридан» предназначен для проектных, монтажно-наладочных и эксплуатирующих организаций, а также для фирм, осуществляющих комплектацию оборудованием объектов строительства и торговые функции.

Каталог составлен инженерами Ридан.

Замечания и предложения будут приняты с благодарностью. Просим направлять их по электронной почте: marina.silakova@ridan.ru.

Содержание

Введение	5
Гидравлические регуляторы давления и температуры прямого действия	
Регулятор перепада давления AFP-R/VFG-2R	9
Регуляторы давления «после себя» AFD-R/VFG-2R	15
Регулятор давления «до себя» AFA-R/VFG-2R	21
Регулятор «перепуска» AFPA-R/VFG-2R	
Термостатические элементы AFT-06R, AFT-17R	
Клапаны регулирующие седельные	
Клапан регулирующий седельный проходной VFM-2R	
Клапаны регулирующие седельные: проходной VRB-2R и трехходовой VRB-3RVRB-3R	45
Клапан регулирующий седельный трехходовой VF-3R (PN 16)	49
Клапан регулирующий седельный проходной VFS-2R (для пара)	55
Клапан регулирующий седельный проходной VF-2R	59
Клапаны регулирующие седельные VZL-2R/3R/4R для местных вентиляционных установок	63
Клапаны регулирующие поворотные и двухпозиционные	
Клапан регулирующий поворотный HRB-3R	
Клапан регулирующий поворотный HFE-3R	
Клапаны двухпозиционные шаровые AMZ-112R — проходной, AMZ-113R — трехходовой	77
Редукторные электроприводы с трехпозиционным и аналоговым управлением	
	งา
Таблица совместимости поворотных клапанов и электроприводов	
Таолица совместимости приводов Ридан с клапанами данфосс	
Редукторный электропривод Ридан ARV(E)-1000R 50/3D с функцией оезопасности Редукторные электроприводы Ридан ARV(E)-1000R, ARE-1000VFM-R	
Редукторные электроприводы Ридан AMV(E)-1000R, ARE-1000VPM-R Редукторный электропривод Ридан AMV(E)-2000R SU/SD с функцией безопасности	
Редукторный электропривод Ридан Аміу(E)-2000к 30/3D с функцией безопасности Редукторный электропривод Ридан AMV(E)-1800R	
Редукторный электропривод Ридан AMV(E)-1800КРедукторный электропривод Ридан AMV(E)-3000R SU/SD с функцией безопасности	
Редукторный электропривод Ридан АМV(E)-3000К 30/3D с функцией безопасности Редукторный электропривод Ридан AMV(E)-3000R	
Редукторный электропривод Ридан АМV(E)-6500RРедукторный электропривод Ридан АМV(E)-6500R	
Редукторный электропривод Ридан АМV(E)-0500КРедукторный электропривод Ридан АМV(E)-10КR	
Редукторный электропривод Ридан АМV(E)-10ККРедукторный электропривод Ридан АМV(E)-26KSR	
Редукторный электропривод Ридан АМV(E)-1000RРедукторный электропривод Ридан АМV(E)-1000R	
Редукторные электроприводы AMB-162R, AMB-182R для поворотных регулирующих клапанов	
Адаптер для присоединения клапанов VFM-2R DN15–50 к электроприводам ARV-1000R и ARE-1000VFM-R	
Адаптер для присоединения клапанов VFM2 DN65–DN150 и VF3 DN100–DN150 к электроприводам AMV(E)-1800/3000R	
Адаптер для присоединения клапанов VF3, VF2, VL, VRB, VRG DN15–50 к электроприводам Ридан Адаптер для присоединения клапанов HRB, HRE DN15–50 к электроприводам Ридан	
Контроллеры серии ЕСL	
· · · · · · · · · · · · · · · · · · ·	147
Контроллер ECL4 Control	
Термопреобразователи сопротивления платиновые серии МВТ	
Реле давления серии KPI	
Реле перепада давления RT262R	
Преобразователь (датчик) давления MBS 1700R	

Введение

Современные объекты капитального строительства оснащаются всеми видами инженерного обеспечения для нормальной жизнедеятельности человека. Среди них первое место занимают системы тепло- и холодоснабжения зданий. В соответствии с требованиями нормативных документов в области строительства эти системы, вне зависимости от их масштабов и сложности, должны оснащаться средствами автоматического регулирования и управления. Основными элементами системы автоматического регулирования являются гидравлические регуляторы, регулирующие клапаны с приводами и контроллеры. Гидравлические регуляторы энергонезависимы и поддерживают давление или перепад давления на заданном уровне за счет поступающего импульса теплоносителя. Регулирующие клапаны с приводами изменяют подачу тепло- или холодоносителя в установки различного назначения по сигналу контроллера. Последний является специализированным устройством, предназначенным для регулирования температуры теплоносителя в системах отопления относительно текущей температуры наружного воздуха, либо заданной температуры воды в системах ГВС. В настоящем каталоге представлены гидравлические регуляторы давления и температуры прямого действия с управляющими элементами, клапаны с электрическими приводами и контроллеры, которые чаще всего применяются для регулирования температуры в системах отопления, горячего водоснабжения, вентиляции и кондиционирования воздуха.

Гидравлически регуляторы

По технологическому назначению регуляторы прямого действия подразделяются на:

- регуляторы температуры;
- регуляторы давления и перепада давления.

Регуляторы прямого действия Ридан представляют собой составную конструкцию из фланцевого регулирующего клапана VFG-2R с условным проходом до 250 мм и отдельно заказываемого регулирующего блока регулятора перепада давления AFP-R, «после себя» AFD-R, «до себя» AFA-R и «перепуска» AFPA-R, а также термостатического элемента AFT-06R, AFT-17R.

При комплектации и заказе регуляторов необходимо иметь в виду следующее:

- Внешние импульсные трубки регуляторов давления и перепада давления не входят в комплект поставки и заказываются дополнительно.
- Клапаны регуляторов температуры и давления VFG-2R не имеют в своей конструкции уплотнителя штока. Уплотнитель штока находится в герметично соединяемом с клапаном регулирующем блоке. Поэтому эксплуатация клапанов при снятом регулирующем блоке, как правило, не допускается, так как при этом из клапана будет выходить регулируемая среда и возможны несчастные случаи.

• Термостатические элементы регуляторов температуры AFT-06R поставляются в комплекте с бронзовой защитной гильзой температурного датчика. При необходимости может быть отдельно заказана защитная гильза из нержавеющей стали, которая используется взамен штатной.

Регулирующие клапаны и электроприводы

Клапаны, представленные в каталоге, различаются по следующим параметрам:

- предназначению регулирующие и запорные;
- количеству регулируемых потоков проходные, трехходовые:
- принципу действия седельные и поворотные.
 В сравнении с поворотными седельные клапаны обеспечивают более качественное регулирование и меньшую протечку в закрытом состоянии, а также способны работать при высоких параметрах регулируемой среды и перепадах давления.
- виду расходной характеристики линейная, составная (двойная линейная или линейно-логарифмическая), равнопроцентная (логарифмическая). Выбор расходной характеристики клапана зависит от соотношения требуемой пропускной способности клапана и пропускной способности регулируемого участка трубопроводной сети с технологическим оборудованием. Как правило, при принимаемом соотношении потерь давления в клапане и потерь на регулируемом участке более 0,5 применяют клапаны с линейной, а лучше составной (двойной линейной или линейно-логарифмической) характеристикой. Такую характеристику имеют большинство регулирующих клапанов Ридан;
- максимально допустимому перепаду давления на клапане разгруженные и неразгруженные по давлению.
 Неразгруженные клапаны обычные седельные клапаны (например, VF-3R), у которых на затвор сверху и снизу действует разное давление. Причем чем больше диаметр клапана, тем больше площадь затвора и больше разница давления, которая мешает приводу закрывать клапан. Так как усилия, развиваемые электрическими приводами, ограничены, предельно допустимые перепады давления на неразгруженных клапанах также лимитированы. Для разгруженных по давлению клапанов значение предельно допустимого перепада давления практически совпадает с величиной условного давления и в малой степени зависит от диаметра клапана. Закрываются разгруженные клапаны при помощи маломощных электроприводов при больших перепадах давления;
- предельным параметрам перемещаемой среды (температуре и условному давлению);
- способу присоединения к трубопроводам резьбовые и фланцевые.
- диапазону условного прохода и пропускной способности.

- В номенклатуре «Ридан» представлены регулирующие клапаны с условным проходом DN = 15–300 мм и пропускной способностью $K_{VS}=0,25$ –990 м³/ч;
- материалу корпуса чугун, нержавеющая сталь, латунь.

Электрические приводы

Для управления клапанами Ридан предлагает электрические приводы, которые различаются по следующим параметрам:

- по типу управляющего сигнала: трехпозиционный или аналоговый.
 - При трехпозиционном управлении шток привода и соответственно клапана перемещается на величину, пропорциональную длительности импульса питающего напряжения, а в аналоговых приводах пропорционально величине управляющего сигнала. Выбор привода производится в зависимости от того, какой сигнал выдает управляющее устройство;
- по величине хода штока;
 Ход штока электропривода должен быть всегда равен или больше хода штока клапана, которым он управляет;
- по развиваемому усилию;
- по величине питающего напряжения 220 или 24 В.

Электронные регуляторы (контроллеры)

Электронные регуляторы Ридан серии ECL-3R, ECL 4 Control — специализированные устройства, предназначенные для регулирования температуры теплоносителя в системах отопления пропорционально текущей температуре наружного воздуха, либо заданной температуры воды в системах ГВС. Регуляторы данной серии не просто снимают проблему автоматизации тепловых пунктов, а решают ее на качественно высоком уровне в результате новаций, заложенных в конструкцию этих приборов:

- «жесткий» алгоритм управления системами отопления и горячего водоснабжения позволяет применить наиболее совершенные и проверенные практикой методы управления системами теплопотребления, исключает затраты времени на программирование и возможные при этом ошибки;
- универсальность регуляторов обеспечивает применения одного и того же прибора для управления различными системами при их многочисленных разновидностях;
- базовые коммуникационные возможности ECL 4 Control включают в себя два порта RS-485, один из которых в расширенных версиях используется для присоединения дополнительного модуля входов-выходов. Свободный порт RS-485 может быть использован для подключения ECL4 Control к системам диспетчеризации по протоколу Modbus RTU. Для приложений с более высокими требованиями к коммуникациям в качестве опции предлагаются те же контроллеры с дополнительными портами RS-232 и Ethernet. Порт RS-232 может быть использован для считывания показаний с общедомового теплосчетчика, а порт Ethernet может применяться как для интеграции в систему диспетчеризации клиента по протоколу Modbus TCP, так и для подключения контроллера к системе облачной диспетчеризации Cloud Control.

В настоящем каталоге представлены необходимые компоненты для автоматизации систем отопления, горячего водоснабжения, вентиляции и кондиционирования воздуха. Техническая информация, приведенная в каталоге, необходима для разработки проектов инженерных систем, заказа оборудования и выполнения монтажных работ. Монтаж, наладка и эксплуатация оборудования должны производиться в соответствии с руководствами по монтажу и эксплуатации оборудования.

Гидравлические регуляторы давления и температуры прямого действия

Техническое описание

Регулятор перепада давления AFP-R/VFG-2R

Описание и область применения

AFP-R/VFG-2R — автоматический регулятор перепада давления Ридан для использования в системах централизованного теплоснабжения. При повышении регулируемого перепада давления клапан регулятора закрывается.

Регулятор Ридан состоит из регулирующего фланцевого клапана, регулирующего блока с диафрагмой и пружиной для настройки перепада давления.

Основные характеристики

- DN = 15-250 mm.
- PN = 25 6ap (DN15-25), 16 6ap (DN32-250).
- Регулируемые среды: вода или 30 % раствор гликоля.
- $K_{VS} = 1,6-450 \text{ m}^3/4.$
- Диапазон настройки:
 0,05-0,35; 0,1-0,7; 0,15-1,5; 0,5-3; 1-6 бар.
- Температура среды: 2–150 °C.
- Присоединение: фланцевое.

Номенклатура и кодовые номера для заказа

Пример заказа

Регулятор перепада давления AFP-R/VFG-2R DN = 65 мм, PN = 16 бар; перемещаемая среда — вода при $T_{\text{макс}}$ = 150 °C; регулируемый перепад давления 0,15–1,5 бар:

- клапан VFG-2R, кодовый номер 065B2394R — 1 шт.;
- регулирующий блок AFP-R, кодовый номер 003G1016R — 1 шт.;
- импульсная трубка AF-R, кодовый номер 003G1391R — 2 компл.

Составляющие регулятора поставляются отдельно.

Регулятор VFG-2R с металлическим уплотнением затвора

Эскиз	DN, mm	К _{VS} , м³ /ч	T _{макс} ,°C	Кодовый номер
		1,6		065B2386 R1
	15	2,5		065B2387 R1
		4		065B2388 R1
	20	6,3		065B2389 R1
	25	8,0		065B2390 R1
	32	16		065B2391 R
	40	20		065B2392 R
	50	32		065B2393 R
	65	50	150	065B2394 R
	80	80		065B2395 R
	100	125		065B2396 R
	125	160		065B2397 R
	150	280		065B2398 R
	200	320		065B2399 R
	250	450		065B2400 R

Номенклатура и кодовые номера для заказа (продолжение)

Регулирующий блок AFP-R

Эскиз	Тип	Для клапанов с DN, мм	Диапазон регулируемого перепада давления ΔР _{рег.} , бар	Площадь регулирующей диафрагмы, см ²	Цвет пружины	Кодовый номер
			1–6	80	Красный	003G1014 R
			0,5-3,0	80	Желтый	003G1015 R
	AFP-R	15–250	0,15-1,50	250	Красный	003G1016 R
			0,1-0,7	250	Желтый	003G1017 R
			0,05-0,35	630	Желтый	003G1018 R

Принадлежности

Эскиз	Тип	Описание	Кол-во при заказе, шт.	Кодовый номер
(§ 11)	Импульсная трубка AF-R	Медная трубка Ø10×1×1500 мм, резьб. фитинг R ¼ ISO 228 (2 шт.)	2 компл.	003G1391 R
	Комплект компрессионных фитингов	Для подсоединения импульсной трубки AF-R к регулятору. Резьба R ¼. Кол-во 6 шт.	1 компл.	003G1468 R
	Заглушка для клапана VFG-2R	Для обеспечения герметичности клапана VFG-2R без регулирующего блока. Резьба М42×2	1	003G1402 R

Запасные детали для VFG-2R

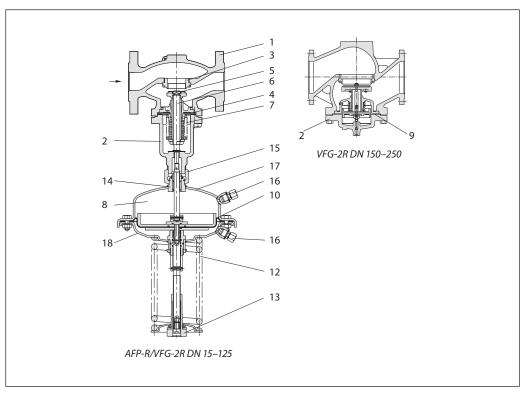
Эскиз	Наименование	DN, mm	К _{vs} , м³/ч	Кодовый номер
	Сальниковый блок	15–25	1,6-8,0	065B2070 R
		32	16	065B2798 R
		40	20	065B2799R
_		50	32	003B2799K
		65	50	065B2800R
	Вставка клапана	80	80	003B2800N
		100	125	065B2801 R
U		125	160	003B280Th
		150	280	065B2964 R
		250	450	065B2965 R
TO	Сальниковое уплотнение			

Регулятор перепада давления AFP-R/VFG-2R

Технические характеристики

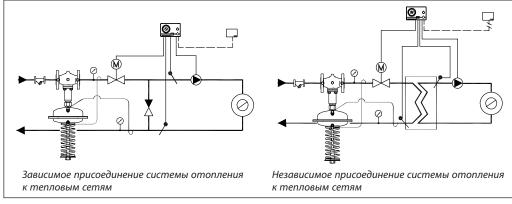
Регулятор VFG-2R

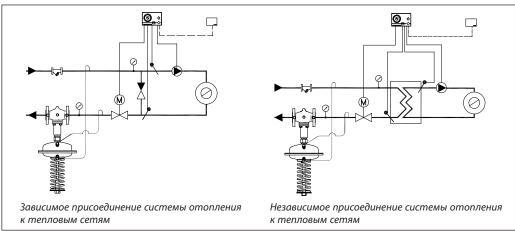
Условный проход DN, мм	15	20	25	32	40	50	65	80	100	125	150	200	250
Пропускная способность K_{VS} , м ³ /ч	1,6; 2,5; 4,0	6,3	8	16	20	32	50	80	125	160	280	320	450
Коэффициент начала кавитации Z	0	,6		0,	55	0,	,5	0,45	0,4	0,35	0,3	0,	,2
Динамический диапазон регулирования	1:	5:1		20):1	30:1		45:1		50:1	55:1	60:1	65:1
Макс. перепад давления на клапане $\Delta P_{\text{макс}}$, бар				16					1	5	12	1	0
Условное давление PN, бар	25, флан 109	цы по 92-2	EN				16, фл	анцы	по EN	1092-1			
Температура среды, °С						2-15	50						
Перемещаемая среда			Вод	а или	30 % i	зодны	й рас	твор г	ликол	пя			
Протечка через закрытый клапан, % от K _{VS}	0,04												
Устройство разгрузки давления	Проточн	ая кам	ера	Cv	пьфо	н из н	ержа	зеюще	ей ста	ли	l	офриг ембра	
Материалы													
Корпус клапана	Высокопрочный чугун EN-GJS-400-18-LT Углеродистая сталь WCB (GGG 40)												
Конус клапана	Нержавеющая сталь												
Седло клапана	Нержавеющая сталь												
Уплотнение затвора	EP	DM					M	еталл	ическ	oe			


Регулирующий блок AFP-R

Площадь регулирующей диафрагмы, см ²		80	250	630	
Диапазоны настройки давления	красный	1–6	0,15–1,50	_	
для соотв. цветов пружины ΔР _{рег.} , бар	желтый	0,5–3	0,1-0,7	0,05-0,35	
Макс. рабочее давлені	ие PN, бар	25	25	16	
Корпус регулирующег	о блока	Нержавеющая сталь			
Регулирующая диафра	гма	EPDM			
Импульсная трубка		Медная трубка ø10×1 мм, штуцер с резьбой R			

Устройство и принцип действия


- 1 корпус клапана;
- 2 крышка клапана;
- 3 седло клапана;
- 4 клапанная вставка;
- 5 конус клапана, разгруженный по давлению;
- 6 шток клапана;
- 7 сильфон для разгрузки клапана по давлению;
- 8 регулирующий блок;
- 9 диафрагма для разгрузки клапана по давлению;
- регулирующая диафрагма регулятора перепада давления;
- пружина для настройки регулятора перепада давления;
- настроечная гайка с возможностью опломбирования;
- 14 шейка регулирующего блока;
- 15 соединительная гайка;
- 16 компрессионный фитинг для импульсной трубки;
- 17 верхняя часть регулирующего блока;
- 18 нижняя часть регулирующего блока;

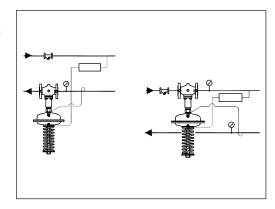

Рост давления в подающем и обратном трубопроводах будет передаваться через импульсные трубки в регулирующий блок. При возрастании перепада давления регулятор клапана прикрывается, а при снижении — открывается, поддерживая таким образом перепад давления на постоянном уровне.

Примеры применения

Монтаж на подающем трубопроводе

Монтаж на обратном трубопроводе

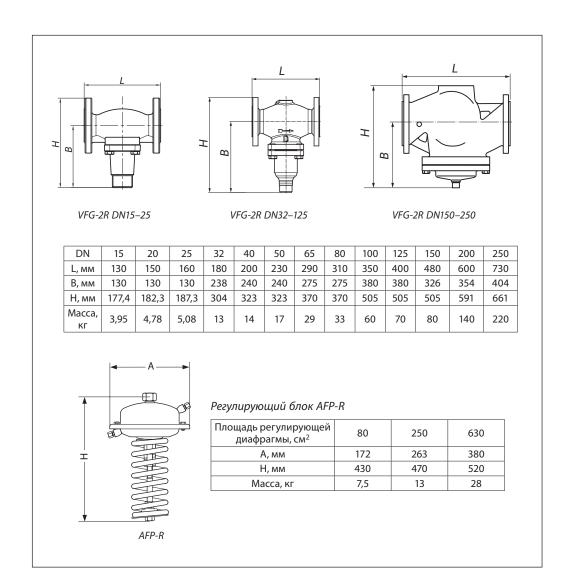
Монтажные положения


Регуляторы DN = 15−80 мм с температурой перемещаемой среды до 120 °С могут быть установлены в любом положении.

Регуляторы с клапанами DN =100-250 мм или с клапаном любого диаметра при температуре перемещаемой среды свыше 120 °С должны быть установлены на горизонтальных трубопроводах регулирующим блоком вниз.

Импульсные трубки должны устанавливаться между подающим или обратным трубопроводом и регулирующим блоком.

В разделе «Дополнительные принадлежности» представлены импульсные трубки AF-R, которые могут быть использованы для подключения охладителя. При установке охладителя трубка, как правило, разрезается.



Настройка регулятора

Регулятор перепада давления настраивается с помощью изменения сжатия настроечной пружины. Для настройки на требуемое значение необходимо вращать настроечную гайку и следить за показаниями манометров.

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Техническое описание

Регуляторы давления «после себя» AFD-R/VFG-2R

Описание и область применения

Регулятор Ридан AFD-R/VFG-2R является автоматическим редукционным клапаном для применения в системах централизованного теплоснабжения. При повышении давления после регулятора (по ходу движения теплоносителя) клапан закрывается.

Регулятор Ридан состоит из фланцевого клапана, регулирующего блока с диафрагмой и пружиной для настройки давления.

Основные характеристики

- DN = 15-250 MM.
- PN = 25 6ap (DN15-25), 16 6ap (DN32-250).
- Диапазоны настройки: 0,05-0,35; 0,15-1,5; 0,1-0,7; 0,5-3; 1-6; 3-12; 8-16 бар.
- $K_{VS} = 1,6-450 \text{ m}^3/4.$
- Температура регулируемой среды (вода или 30 % водный раствор гликоля): 2–150 °С.
- Присоединение к трубопроводу: фланцевое.

Номенклатура и кодовые номера для заказа

Пример заказа Регулятор давления «после себя» AFD-R/VFG-2R DN = 65 мм, PN = 16 бар; перемещаемая среда вода при $T_{\text{макс.}}$ = 150 °C; регулируемое давление — 0,15–1,50 бар:

- клапан VFG-2R, кодовый номер 065B2394R — 1 шт.;
- регулирующий блок AFD-R, кодовый номер 003G1005R — 1 ит.:
- импульсная трубка AF-R, кодовый номер 003G1391R — 1 компл

Составляющие регулятора поставляются отдельно.

Регулятор VFG-2R с металлическим уплотнением затвора

Эскиз	DN, mm	К _{VS} , м³ /ч	T _{макс} , °C	Кодовый номер
		1,6		065B2386 R1
	15	2,5		065B2387 R1
		4		065B2388 R1
	20	6,3		065B2389 R1
	25	8,0		065B2390 R1
	32	16		065B2391 R
	40	20		065B2392 R
	50	32		065B2393 R
	65	50	150	065B2394 R
	80	80		065B2395 R
	100	125		065B2396 R
	125	160		065B2397 R
	150	280		065B2398 R
	200	320		065B2399 R
	250	450		065B2400 R

Номенклатура и кодовые номера для заказа (продолжение)

Регулирующий блок AFD-R

Эскиз	Диапазон регулируемого давления Р _{рег} , бар	Для клапанов с DN, мм	Площадь регулирующей диафрагмы, см ²	Цвет пружины	Кодовый номер
	8–16	15 105	32	Черный	003G1000 R
	3–12	15–125	32	Красный	003G1001 R
	1–6		80	Красный	003G1002 R
	0,5-3		80	Желтый	003G1003 R
	0,1-0,7	15–250	250	Желтый	003G1004R
	0,15-1,5		250	Красный	003G1005R
	0,05-0,35		630	Желтый	003G1006 R

Принадлежности

Эскиз	Тип	Описание	Кол-во при заказе, шт.	Кодовый номер
(§ 11)	Импульсная трубка AF-R	Медная трубка Ø10×1×1500 мм, резьб. ниппель R ¼ ISO 228 (2 шт.)	1 компл.	003G1391 R
	Комплект компрессионных фитингов	Для подсоединения импульсной трубки AF-R к регулятору. Резьба R ¼. Кол-во 6 шт.	1 компл.	003G1468 R
	Заглушка для клапана VFG-2R	Для обеспечения герметичности клапана VFG-2R без регулирующего блока. Резьба М42×2	1	003G1402 R

Запасные детали для VFG-2R

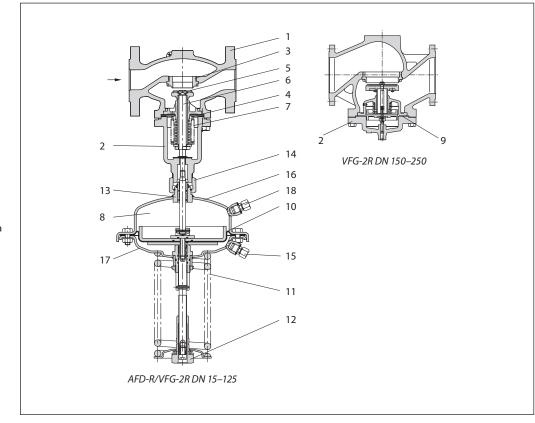
Эскиз	Наименование	DN, mm	К _{VS} , м³/ч	Кодовый номер
	Сальниковый блок	15–25	1,6-8,0	065B2070 R
		32	16	065B2798 R
		40	20	065B2799R
		50	32	003B2799K
		65	50	065B2800 R
	Вставка клапана	80	80	003B2800K
		100	125	065B2801R
U		125	160	003B280TK
		150	280	065B2964 R
		250	450	065B2965 R
To	Сальниковое уплотнение			

Регуляторы давления «после себя» AFD-R/VFG-2R

Технические характеристики

Регулятор VFG-2R

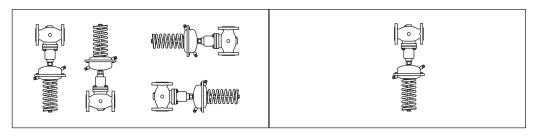
	_			1								_	_
Условный проход DN, мм	15	20	25	32	40	50	65	80	100	125	150	200	250
Пропускная способность К _{VS} , м³/ч	1,6; 2,5; 4,0	6,3	8	16	20	32	50	80	125	160	280	320	450
Коэффициент начала кавитации Z	0	,6		0,	55	0,	,5	0,45	0,4	0,35	0,3	0,	,2
Динамический диапазон регулирования	1:	5:1		20):1	30:1		45:1		50:1	55:1	60:1	65:1
Макс. перепад давления на клапане ΔР _{макс} , бар				16					1	5	12	1	0
Условное давление PN, бар	25, фланцы по EN 1092-2 16, фланцы по EN1092-1												
Температура среды, °С	2–150												
Перемещаемая среда	Вода или 30 % водный раствор гликоля												
Протечка через закрытый клапан, % от K _{VS}						0,0	4						
Устройство разгрузки давления	Проточн	ая кам	ера	Cv	ільфо	н из н	ержа	зеюще	ей ста	ли		офрир ембра	
Материалы													
Корпус клапана	Высокопрочный чугун EN-GJS-400-18-LT Углеродистая сталь WCB (GGG 40)												
Конус клапана					Нерж	авеюц	цая ст	аль					
Седло клапана					Нерж	авеюц	цая ст	аль					
Уплотнение затвора	EP	DM	-				М	еталл	ическ	oe			


Регулирующий блок AFD-R

Площадь регулирующей диафрагмы, см ²		32	80	250	630	
Диапазоны настройки	красный	3–12	1–6	0,15–1,5	-	
давления для соотв. цветов пружины Р _{рег} , бар	желтый	-	0,5–3	0,1-0,7	0,05-0,35	
	черный	8–16	-	-	-	
Макс. рабочее давление PN, бар	25 16					
Корпус регулирующего блока		Нержавеющая сталь				
Гофрированная мембрана		EPDM				
Импульсная трубка	Медная трубка Ø10×1 мм, штуцер с резьбой R					
Охладитель импульса давления	Сталь с лаковым покрытием, емкость 1 л (V1), 3 л (V2)					

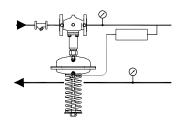
Устройство и принцип действия

- 1 корпус клапана;
- 2 крышка клапана;
- 3 седло клапана;
- 4 клапанная вставка;
- 5 конус клапана, разгруженный по давлению;
- 6 шток клапана;
- 7 сильфон для разгрузки клапана по давлению;
- 8 регулирующий блок;
- 9 диафрагма для разгрузки клапана по давлению;
- 10 регулирующая диафрагма регулятора перепада давлений;
- 11 пружина для настройки регулятора перепада давлений;
- 12 настроечная гайка с возможностью опломбирования;
- 13 шейка регулирующего блока;
- 14 соединительная гайка;
- 15 компрессионный фитинг для импульсной трубки;
- 16 верхняя часть регулирующего блока;
- 17 нижняя часть регулирующего блока;
- 18 ниппель для отбора атмосферного давления;
- 19 удлинитель штока;
- 20 запорный клапан для наполнения водой;
- 21 запорная пробка.


Если система находится в нерабочем состоянии, то клапан полностью открыт. Давление в системе после регулирующего клапана передается в полость под регулирующую диафрагму (со стороны настроечной пружины) через импульсную трубку. На другую сторону диафрагмы действует атмосферное давление.

При возрастании регулируемого давления свыше установленного значения клапан прикрывается до тех пор, пока не будет достигнуто равновесие между усилиями со стороны диафрагмы и пружины. Давление может быть отрегулировано изменением настройки.

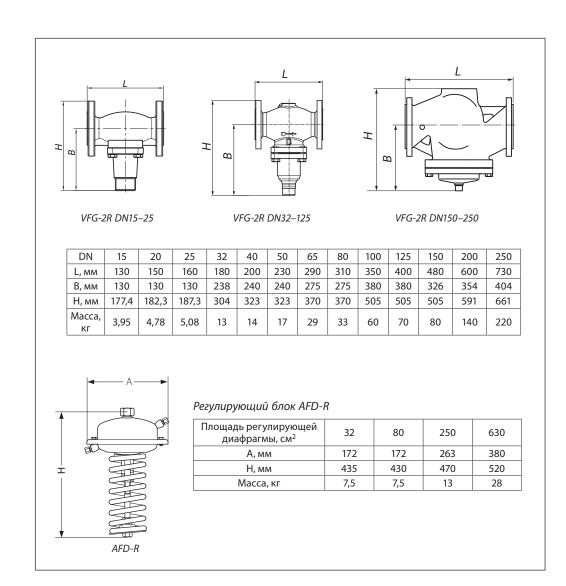
Монтажные положения


Регуляторы DN = 15–80 мм с температурой перемещаемой среды до 120 $^{\circ}$ С могут быть установлены в любом положении.

Регуляторы с клапанами DN = 100-250 мм или клапанами любого диаметра при температуре перемещаемой среды свыше $120\,^{\circ}$ С должны быть установлены на горизонтальных трубопроводах регулирующим блоком вниз.

На импульсной трубке между трубопроводом и регулирующим блоком должен быть установлен охладитель импульса давления. Он применяется при температуре свыше 150 °С и при любой температуре пара.

В разделе «Принадлежности» представлены импульсные трубки AF-R, которые могут быть использованы для подключения охладителя.


Настройка регулятора

Регулятор давления настраивается с помощью изменения сжатия настроечной пружины. Для настройки на требуемое значение

необходимо вращать настроечную гайку и следить за показаниями манометров.

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Техническое описание

Регулятор давления «до себя» AFA-R/VFG-2R

Описание и область применения

AFA-R/VFG-2R — автоматический регулятор Ридан, поддерживающий постоянное давление в трубопроводе до регулятора (по ходу движения теплоносителя). Предназначен для применения в системах централизованного теплоснабжения. При повышении давления до регулятора клапан открывается.

Регулятор Ридан состоит из регулирующего фланцевого клапана, регулирующего блока с диафрагмой и пружиной для настройки давления.

Основные характеристики

- DN = 15-250 MM.
- PN = 25 6ap (DN15-25), 16 6ap (DN32-250).
- Диапазоны настройки: 0,05–0,35; 0,1–0,6; 0,15–1,2; 0,5–2,5; 1–5; 3–11; 10–16 бар.
- $K_{VS} = 1,6-450 \text{ m}^3/4.$
- Температура регулируемой среды (вода или 30 % водный раствор гликоля): 2–150 °C.
- Присоединение к трубопроводу: фланцевое.

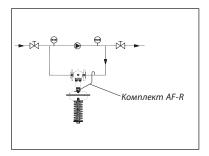
Номенклатура и кодовые номера для заказа

Пример заказа
Регулятор давления «до себя»
AFA-R/VFG-2R DN = 65 мм,
PN = 16 бар; перемещаемая среда — вода при $T_{\text{мак.}}$ = 150°C; регулируемое давление — 3–11 бар:

- клапан VFG-2R, DN = 65 мм, кодовый номер 065B2394R — 1 шт.;
- регулирующий блок AFA-R, кодовый номер 003G1008R — 1 шт.:
- импульсная трубка AF-R, кодовый номер 003G1391R — 1 компл.

Составляющие регулятора поставляются отдельно.

Регулятор VFG-2R с металлическим уплотнением затвора


Эскиз	DN, mm	K _{VS} , м³ /ч	Т _{макс} , °С	Кодовый номер
		1,6		065B2386 R1
	15	2,5]	065B2387 R1
		4		065B2388 R1
	20	6,3	1	065B2389 R1
	25	8,0		065B2390 R1
	32 16	16		065B2391 R
	40	20		065B2392 R
	50	32	1	065B2393 R
	65	50	150	065B2394R
	80	80		065B2395 R
	100	125		065B2396 R
	125	160		065B2397 R
	150	280		065B2398 R
	200	320		065B2399 R
	250	450		065B2400 R

Номенклатура и кодовые номера для заказа (продолжение)

Регулирующий блок AFA-R

Эскиз	Эскиз Регулируемое давление Р _{рег.} , бар		Площадь регулир. диафрагмы, см²	Цвет пружины	Кодовый номер
	10–16	15–125	32	Черный	003G1007 R
	3–11	15-125	32	Красный	003G1008 R
	1–5		80	Красный	003G1009 R
	0,5-2,5		80	Желтый	003G1010 R
	0,15-1,2	15–250	250	Красный	003G1011 R
	0,1-0,6		250	Желтый	003G1012 R
	0,05-0,35		630	Желтый	003G1013 R

Принадлежности

Эскиз	Тип	Описание	Кол-во при заказе, шт.	Кодовый номер
(§ 11)	Импульсная трубка AF-R	Медная трубка Ø10×1×1500 мм, резьб. ниппель R ¼ ISO 228 (2 шт.)	1 компл.	003G1391 R
	Комплект компрессионных фитингов	Для подсоединения импульсной трубки AF-R к регулятору. Резьба R ¼. Кол-во 6 шт.	1 компл.	003G1468 R
	Заглушка для клапана VFG-2R	Для обеспечения герметичности клапана VFG-2R без регулирующего блока. Резьба М42×2	1	003G1402 R

Запасные детали для VFG-2R

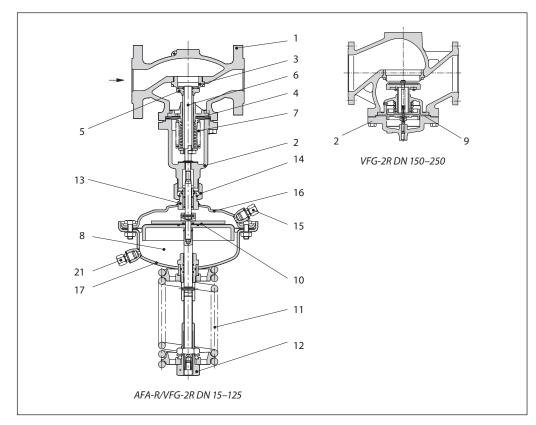
Эскиз	Наименование	DN, mm	K _{VS} , м³/ч	Кодовый номер	
	Сальниковый блок	15–25	1,6-8,0	065B2070 R	
		32	16	065B2798 R	
		40	20	065B2799 R	
		50	32	005B2/99K	
		65	50	065B2800 R	
	Вставка клапана	80	80	003B2800K	
		100	125	065B2801 R	
U		125	160	003B2801K	
		150	280	065B2964 R	
		250	450	065B2965 R	
To	Сальниковое уплотнение				

Регулятор давления «до себя» AFA-R/VFG-2R

Технические характеристики

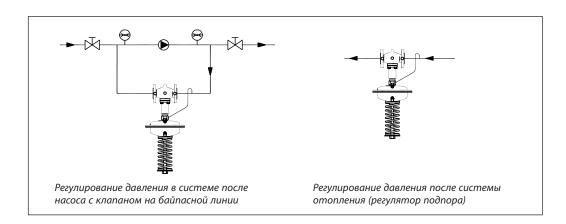
Регулятор VFG-2R

Условный проход DN, мм	15	20	25	32	40	50	65	80	100	125	150	200	250
Пропускная способность К _{VS} , м³/ч	1,6; 2,5; 4,0	6,3	8	16	20	32	50	80	125	160	280	320	450
Коэффициент начала кавитации Z	0	,6		0,	55	0,	.5	0,45	0,4	0,35	0,3	0,	,2
Динамический диапазон регулирования	15	5:1		20):1	30:1		45:1		50:1	55:1	60:1	65:1
Макс. перепад давления на клапане ΔР _{макс} , бар				16					1	5	12	1	0
Условное давление PN, бар	25, фланцы по EN 1092-2 16, фланцы по EN1092-1												
Температура среды, °С	2–150												
Перемещаемая среда	Вода или 30 % водный раствор гликоля												
Протечка через закрытый клапан, % от K _{VS}						0,04	4						
Устройство разгрузки давления	Проточна	ая кам	ера	Cv	ільфо	н из н	ержа	зеюще	ей ста	ли		офрир ембра	
Материалы	·												
Корпус клапана	Высокопрочный чугун EN-GJS-400-18-LT Углеродистая сталь WCB (GGG 40)												
Конус клапана					Нерж	авеюц	цая ст	аль					
Седло клапана					Нерж	авеюц	цая ст	аль					
Уплотнение затвора	EPI	DM					М	еталл	ическ	oe			


Регулирующий блок AFA-R

Площадь регулир. диаф	рагмы, см ²	32	80	250	630		
Диапазоны	красный	3–11	1–5	0,15-1,2	_		
настройки давления	желтый	-	0,5-2,5	0,1-0,6	0,05-0,35		
для соотв. цветов пружины Р _{рег} , бар	черный	10–16	-	-	-		
Макс. рабочее давление	PN, бар	25 16					
Корпус регулирующего	блока	Нержавеющая сталь					
Гофрированная мембра	на	EPDM					
Импульсная трубка		Медная трубка Ø10×1 мм, штуцер с резьбой R					
Охладитель импульса д	авления	Сталь с лаковым покрытием, емкость 1 л (V1), 3 л (V2)					

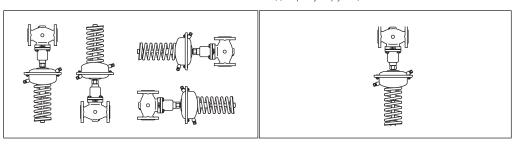
Устройство и принцип действия

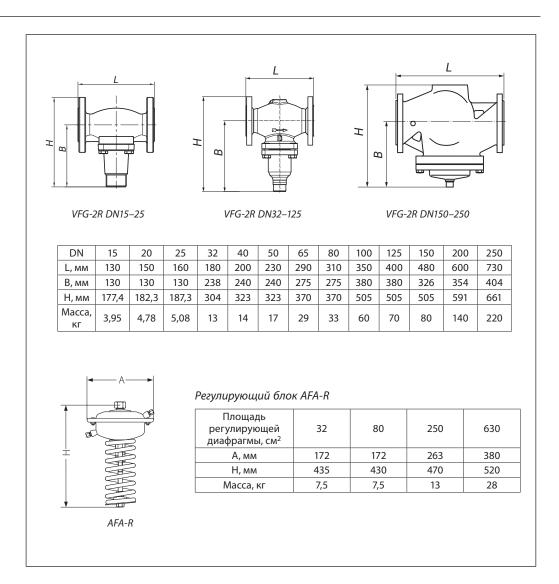

- 1 корпус клапана;
- 2 крышка клапана;
- 3 седло клапана;
- 4 клапанная вставка;
- 5 конус клапана, разгруженный по давлению;
- 6 шток клапана;
- 7 сильфон для разгрузки клапана по давлению;
- 8 регулирующий блок;
- 10 регулирующая диафрагма регулятора перепада давлений;
- 11 пружина для настройки регулятора перепада давлений;
- 12 настроечная гайка с возможностью опломбирования;
- 13 шейка регулирующего блока;
- 14 соединительная гайка;
- 15 компрессионный фитинг для импульсной трубки;
- 16 верхняя часть регулирующего блока;
- 17 нижняя часть регулирующего блока.

Если система находится в нерабочем состоянии, то клапан полностью закрыт. Давление в трубопроводе перед регулирующим клапаном передается в полость над регулирующей диафрагмой через импульсную трубку. На другую сторону диафрагмы действует атмосферное давление.

При возрастании регулируемого давления свыше установленного значения клапан начинает открываться до тех пор, пока не установится равновесие между усилиями со стороны диафрагмы и пружины. Давление может быть отрегулировано изменением настройки.

Примеры применения




Монтажные положения

Регуляторы DN 15-80 с температурой перемещаемой среды до 120 °С могут быть установлены в любом положении.

Регуляторы с клапанами DN 100–250 или клапанами любого диаметра при температуре перемещаемой среды свыше 120 °С должны быть установлены на горизонтальных трубопроводах регулирующим блоком вниз.

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», поготип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Техническое описание

Регулятор «перепуска» AFPA-R/VFG-2R

Описание и область применения

AFPA-R/VFG-2R является автоматическим регулятором «перепуска» Ридан для использования в системах централизованного теплоснабжения. При повышении перепада давления на регуляторе клапан открывается.

Регулятор Ридан состоит из регулирующего фланцевого клапана, регулирующего блока с диафрагмой и пружины для настройки перепада давления.

Основные характеристики

- DN = 15-250 MM.
- PN = 25 6ap (DN15-25), 16 6ap (DN32-250).
- Диапазоны настройки: 0,05–0,3; 0,1–0,6; 0,15–1,2; 0,5–2,5; 1–5 бар.
- $K_{VS} = 1,6-450 \text{ m}^3/4.$
- Температура регулируемой среды (вода или 30 % водный раствор гликоля): 2–150 °C.
- Присоединение к трубопроводу: фланцевое.

Номенклатура и кодовые номера для заказа

Пример заказа Регулятор «перепуска» AFPA-R/ VFG-2R, DN = 65 мм, PN = 16 бар, перемещаемая среда — вода при $T_{\text{макс.}} = 150$ °C, регулируемый перепад давлений — 0,5–2,5 бар.

- клапан VFG-2R, DN = 65 мм 1 шт., кодовый номер 065B2394R;
- регулирующий блок AFPA-R — 1 шт., кодовый номер 003G1020R;
- импульсная трубка AF-R — 2 компл., кодовый номер 003G1391R.

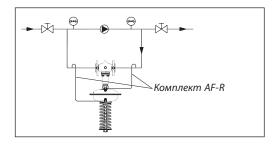
Составляющие регулятора поставляются отдельно.

Регулятор VFG-2R с металлическим уплотнением затвора

Эскиз	DN, mm	К _{VS} , м³ /ч	T _{макс} , °C	Кодовый номер
$\Pi \longrightarrow \Pi$		1,6		065B2386R1
	15	2,5		065B2387R1
		4		065B2388R1
	20	6,3		065B2389R1
	25	8,0		065B2390R1
	32 16		065B2391R	
	40	20		065B2392R
	50	32	150	065B2393R
	65	5 50		065B2394R
	80	80		065B2395R
	100	125		065B2396R
	125	160		065B2397R
	150	280		065B2398R
	200	320		065B2399R
	250	450		065B2400R

Регулирующий блок АГРА-R

Эскиз	Для клапана DN, мм	Диапазон регулируемого перепада давления ΔР _{рег} , бар	Площадь регулирующей диафрагмы, см²	Цвет пружины	Кодовый номер
		1–5	80	Красный	003G1019R
		0,5-2,5	80	Желтый	003G1020R
	15–250	0,15-1,2	250	Красный	003G1021R
	15-250	0,1-0,6	250	Желтый	003G1022R
		0,05-0,3	630	Желтый	003G1023R


Номенклатура и кодовые номера для заказа (продолжение)

Принадлежности

Эскиз	Тип	Описание	Кол-во при заказе, шт.	Кодовый номер
(§ 11)	Импульсная трубка AF-R	Медная трубка Ø10×1×1500 мм, резьб. ниппель R ¼ ISO 228 (2 шт.)	2 компл.	003G1391R
	Комплект компрессионных фитингов	Для подсоединения импульсной трубки AF-R к регулятору. Резьба R ¼. Кол-во 6 шт.	1 компл.	003G1468R
	Заглушка для клапана VFG-2R	Для обеспечения герметичности клапана VFG-2R без регулирующего блока. Резьба М42×2	1	003G1402R

Запасные детали для VFG-2R

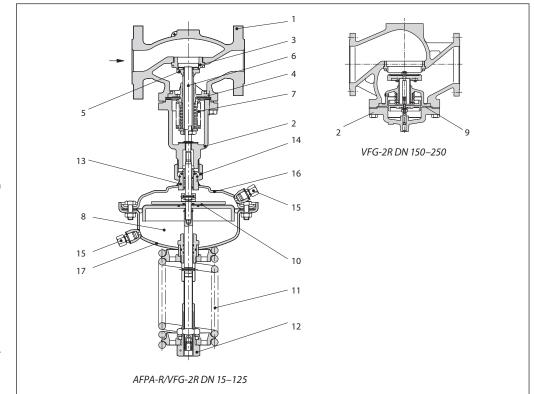
Эскиз	Наименование	DN, mm	K _{VS} , м³/ч	Кодовый номер	
	Сальниковый блок	15–25	1,6-8,0	065B2070R	
		32	16	065B2798R	
		40	20	065B2799R	
		50	32	003B2799K	
		65	50	065B2800R	
	Вставка клапана	80	80	003B2800K	
		100	125	065B2801R	
T T		125	160	003B2801K	
		150	280	065B2964R	
		250	450	065B2965R	
TO .	Сальниковое уплотнение				

Регулятор «перепуска» AFPA-R/VFG-2R

Технические характеристики

Регулятор VFG-2R

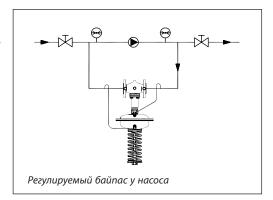
Условный проход DN, мм	15	20	25	32	40	50	65	80	100	125	150	200	250
Пропускная способность К _{VS} , м³/ч	1,6; 2,5; 4,0	6,3	8	16	20	32	50	80	125	160	280	320	450
Коэффициент начала кавитации Z	0,6		0,	55	0,	,5 0,45		0,4	0,35	0,3	0	,2	
Динамический диапазон регулирования	15	15:1 20:1 30:1 45:1			50:1	55:1	60:1	65:1					
Макс. перепад давления на клапане ΔР _{макс} , бар	16 15 12 10					0							
Условное давление PN, бар	25, фланцы по EN 16, фланцы по EN1092-1												
Температура среды, °С	2–150												
Перемещаемая среда	Вода или 30 % водный раствор гликоля												
Протечка через закрытый клапан, % от K _{VS}	0,04												
Устройство разгрузки давления	Проточная камера Сильфон из нержавеющей стали Гофрир. мембрана												
Материалы	Материалы												
Корпус клапана	Высокопро EN-GJS-4 (GG		, ,	, ,									
Конус клапана	Нержавеющая сталь												
Седло клапана	Нержавеющая сталь												
Уплотнение затвора	EPDM Металлическое												


Регулирующий блок АГРА-R

Площадь регулирующей диафрагмы, см²		80	250	630	
Диапазоны настройки	красный	1–5	0,15-1,2	_	
давления для соотв. цветов пружины $\Delta P_{per.}$, бар	желтый	0,5-2,5	0,1-0,6	0,05-0,3	
Макс. рабочее давление, бар		25	25	16	
Корпус регулирующего блока		Нержавеющая сталь			
Гофрированная мембрана		EPDM			
Импульсная трубка		Медная трубка Ø10×1 мм, штуцер с резьбой R			
Охладитель импульса давления		Сталь с лаковым покрытием, емкость 1 л (V1), 3 л (V2)			

Устройство и принцип действия

- 1 корпус клапана;
- 2 крышка клапана;
- 3 седло клапана;
- 4 клапанная вставка;
- 5 конус клапана, разгруженный по давлению;
- 6 шток клапана;
- 7 сильфон для разгрузки клапана по давлению;
- 8 регулирующий блок;
- 10 регулирующая диафрагма регулятора перепада давления;
- 11 пружина для настройки регулятора перепада давления;
- 12 настроечная гайка с возможностью опломбирования:
- 13 шейка регулирующего блока;
- 14 соединительная гайка;
- 15 компрессионный фитинг для импульсной трубки;16 верхняя часть регулирую-
- 16 верхняя часть регулирующего блока;
- 17 нижняя часть регулирующего блока.

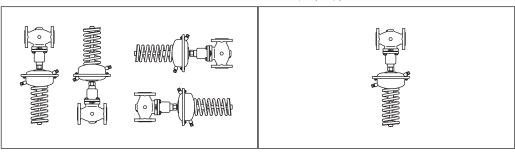

Давление в трубопроводе до и после регулятора передается в камеры над и под мембраной через импульсные трубки. При возрастании перепада давления свыше установленного значения клапан начинает открываться до тех пор, пока не установится равновесие между усилием

воздействующего на диафрагму перепада давления и усилием пружины.

Регулируемый перепад давления может быть отрегулирован изменением настройки.

Пример применения

Монтаж на подающем трубопроводе

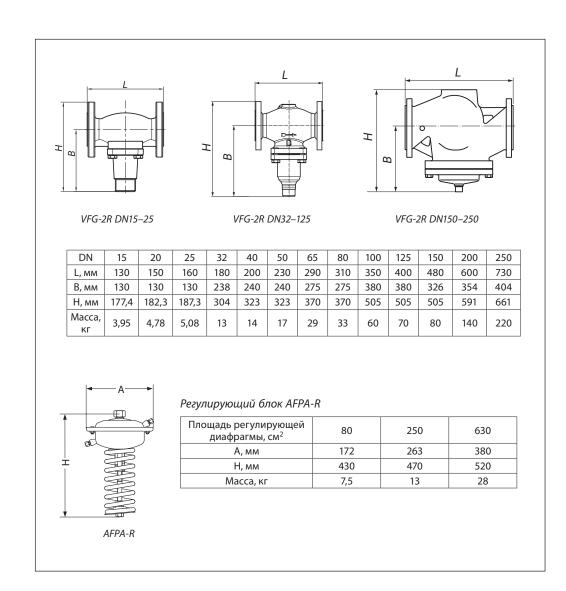

Техническое описание

Регулятор «перепуска» AFPA-R/VFG-2R

Монтажные положения

Регуляторы DN = 15–80 мм с температурой перемещаемой среды до 120 $^{\circ}$ С могут быть установлены в любом положении.

Регуляторы с клапанами DN =100-250 мм или с клапаном любого диаметра при температуре перемещаемой среды свыше 120 °С должны быть установлены на горизонтальных трубопроводах регулирующим блоком вниз.



Настройка регулятора

Регулятор настраивается с помощью изменения сжатия настроечной пружины.

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

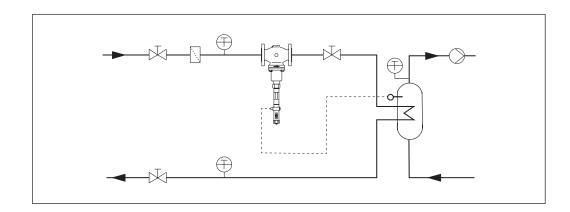
Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Техническое описание

Термостатические элементы AFT-06R, AFT-17R

Описание и область применения

Термостатические элементы серии АFT-R являются составной частью регуляторов температуры прямого действия и работают по принципу расширения жидкости. Конструкцией термоэлементов АFT-06R, AFT-17R предусматривается встроенный настроечный узел в присоединительный элемент. Имеются две модификации датчика температуры с различными постоянными времени.


Термостатические элементы Ридан AFT-06R, AFT-17R предназначены для работы с клапаном VFG-2R.

Регулирование температуры воды в системах ГВС и ограничение температуры теплоносителя в обратном трубопроводе систем централизованного теплоснабжения — основные области применения данных термоэлементов.

Основные характеристики (термоэлементы, клапаны)

- DN = 15-125 MM.
- PN = 16 6ap.
- Соединение с трубопроводом: фланцевое.
- Перемещаемая среда: вода, 30 %-ный водный раствор гликоля.
- Диапазон температур: 2-150 °C.
- Монтаж на подающем и обратном трубопроводах.

Пример применения

Номенклатура и кодовые номера для заказа

Пример заказа
Регулятор температуры прямого действия АFT-06R/VFG-2R
DN = 65 мм, PN = 16 бар;
перемещаемая среда — вода
при Т_{макс} = 150 °C; регулируемый
диапазон температур 20–90 °C:
– клапан VFG-2R, кодовый номер
065B2394R — 1 шт.;

– термостатический элемент AFT-06R, кодовый номер 065-4391R — 1 шт.;

Клапан VFG-2R проходной, нормально открытый, разгруженный по давлению

Эскиз	DN, mm	K _{vs} , м³ /ч	T _{макс} ,°C	Кодовый номер
	15	4,0		065B2388 R
	20	6,3		065B2389 R
	25	8,0	150	065B2390 R
	32	16		065B2391 R
	40	20		065B2392 R
	50	32	150	065B2393 R
\	65	50		065B2394 R
	80	80		065B2395 R
	100	125		065B2396 R
	125	160		065B2397 R

Термоэлемент AFT-R

Эскиз	Тип	Диапазон настройки,°С	Датчик/пост. времени	Модификация	Кодовый номер
	AFT-06R	-20-50	Датчик с бронзовой погружной гильзой/120 с	Настроечный узел на присоединительном элементе	065-4390R
		20-90			065-4391R
		40–110			065-4392R
		60-130			065-4393R
		110–180			065-4394R
	AFT-17R	-20-50	Спиральный датчик без погружной гильзы/20 с	Настроечный узел на присоединительном элементе	065-4400R
		20-90			065-4401R
		40–110			065-4402R
		60–130			065-4403R

Дополнительные принадлежности

Эскиз	Наименование	Тип термоэлемента	Материал	Кодовый номер
	Погружная гильза	AFT-06R	Бронза	003G1399R

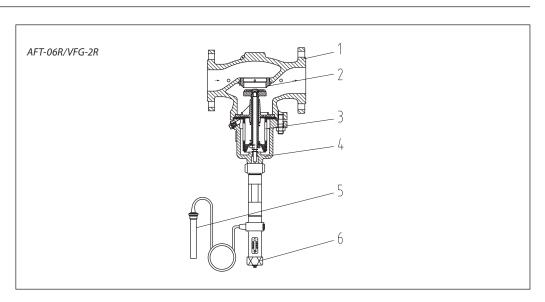
Запасные детали для VFG-2R

Эскиз	Наименование	DN, mm	К _{vs} , м³/ч	Кодовый номер	
		15	4,0	065B2796 R	
		20	6,3	065B2797 R	
		25	8	065827000	
9		32	16	065B2798 R	
	Вставка клапана	40	20	065827000	
	Detablia Manana	50	32	065B2799 R	
		65	50	065020000	
		80	80	065B2800 R	
		100	125	06EP2901D	
		125	160	065B2801 R	
O	Сальниковое уплотнение				

Термостатические элементы AFT-06R, AFT-17R

Технические характеристики

Регулятор VFG-2R


Условный проход DN, мм	15	20	25	32	40	50	65	80	100	125
										_
Пропускная способность K _{VS} , м³/ч	4	6,3	8	16	20	32	50	80	125	160
Коэффициент начала кавитации Z	0,6	0,6	0,6	0,55	0,55	0,5	0,5	0,45	0,4	0,35
Динамический диапазон регулирования	15:1	15:1	15:1	20:1	20:1	30:1	45:1	45:1	45:1	50:1
Макс. перепад давления на клапане $\Delta P_{\text{макс}}$ бар	16 15						5			
Условное давление PN, бар	16, фланцы по EN1092-1									
Температура среды, °С	2–150									
Перемещаемая среда	Вода или 30 % водный раствор гликоля									
Протечка через закрытый клапан, $\%$ от K_{VS}	0,04									
Устройство разгрузки давления			Cı	ильфон	из нер	жавеюц	цей стал	пи		
Материал										
Корпус клапана	Углеродистая сталь WCB									
Конус клапана	Нержавеющая сталь									
Седло клапана	Нержавеющая сталь									
Уплотнение затвора				ı	Иет <mark>а</mark> лл	ическо	9			

Термостатический элемент AFT-R

Тип термоэлемента	AFT-06R	AFT-17R		
Диапазон настройки температатуры, °С	-20-50, 20-90, 40-110, 60-130, 110-180			
Постоянная времени Т, с	120 (с погружной гильзой)	20		
Ход штока при изменении температуры, мм/°С	0,	8		
Макс. допустимая температура на датчике, °C	На 100 °C выше значения настройки			
Условное давление PN, бар, датчик, погружная гильза	40			
Датчик температуры	Гладкий датчик Ø22×380 мм	Спиральный датчик Ø30×500 мм		
Заполнение датчика	Силиконовое масло			
Длина капилляра датчика, м	5			
Материал датчика	Латунь, бронза	Медная никелир. спираль		
Материал погружной гильзы	Бронза, покрытая никелем	Без погружной гильзы		
Масса, кг	3,0	3,5		

Устройство

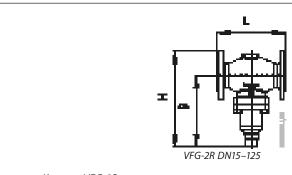
- 1 корпус клапана;
- 2 седло клапана;
- 3 золотник;
- 4 крышка;
- 5 датчик;
- 6 настроечный узел.

Изменение температуры рабочей среды внутри датчика изменяет ее объем и давление, которое передается по капиллярной трубке на пружину термоэлемента. Пружина, сжимаясь или растягиваясь, перемещает связанный с ней

золотник клапана. При увеличении температуры регулируемой среды клапан закрывается, при уменьшении — открывается.

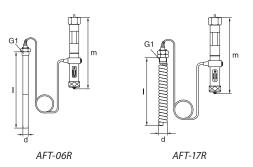
Настройка

Температурная настройка термоэлемента регулятора производится по термометру путем изменения силы сжатия настроечной пружины вращением настроечной рукоятки. При


настройке можно ориентироваться на температурную шкалу на корпусе термостатического элемента.

Различие модификаций AFT-06R и AFT-17R

Термостат АFT-06R отделен от контролируемой среды погружной гильзой, поэтому не имеет прямого контакта со средой, что удобно в обслуживании, но скорость реакции низкая. Такая модификация подходит для регулирования жидких сред, обвязки емкостных подогревателей.


Термостат АFТ-17R находится в прямом контакте с контролируемой средой и имеет большой диапазон измерения температуры, поэтому скорость реакции выше, чем у АFТ-06R. Данная модификация подходит для контроля температуры жидкости, обвязки скоростных подогревателей.

Габаритные и присоединительные размеры

Клапан VFG-2R

DN, mm	15	20	25	32	40	50	65	80	100	125
L, mm	130	150	160	180	200	230	290	310	350	400
В, мм	212	212	238	238	240	240	275	275	380	380
Н, мм	267	267	304	304	323	323	370	370	505	505
Масса, кг	6,2	6,7	9,7	13	14	17	29	33	60	70

Термостатический элемент AFT-R

Модификация	AFT-06R	AFT-17R
l, mm	380	500
d, мм	24	30
R, мм	1"	1"
т, мм	320	320
Масса, кг	3,3	3,5

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Клапаны регулирующие седельные

Клапан регулирующий седельный проходной VFM-2R

Описание и область применения

Регулирующий клапан Ридан VFM-2R предназначен для применения в системах тепло- и холодоснабжения зданий.

Клапан может сочетаться со следующими электрическими приводами Ридан:

- ARV-1000R (DN 15-50) через адаптер,
- ARE-1000VFM-R (DN 15-50) через адаптер,
- ARV-1000R SU/SD (DN 15-50) через адаптер,
- ARE-1000R SU/SD (DN 32-50) через адаптер,
- AMV(E)-1800R (DN 65-80),
- AMV(E)-2000R SU/SD (DN 65-80),
- AMV(E)-3000R (DN 100-200),
- AMV(E)-3000R SU/SD (DN 100-200),
- AMV(E)-6500R (DN 250),
- AMV(E)-10KR (DN 300-400).

Особенности

- Двойная линейная характеристика регулирования (DN 15–50).
- Линейная-логарифмическая (DN 65-400).
- Динамический диапазон регулирования: 50:1 (DN 15-50), >50:1 (DN 65-400).
- Разгруженный по давлению.

Основные характеристики

- Условный проход: DN = 15-400 мм.
- Пропускная способность: $K_{VS} = 0.25-1960 \text{ м}^3/\text{ч}.$
- Условное давление: PN = 25 бар (для DN 15–50), 16 бар (DN 65–400).
- Регулируемая среда: вода или 30 % (для DN 15–50); 50 % водный раствор гликоля.
- Температура регулируемой среды: +2...150 °C (для DN 15-50);
 -5...150 °C для DN 15-200 (при температуре
 - —5...150 С для DN 15−200 (при температура ниже 0 °C требуется подогреватель штока 065Z7020R);
 - 0...150 °C для DN 250-400.
- Присоединение к трубопроводу: фланцевое FN 1092-2

Номенклатура и коды для оформления заказа

Эскиз	DN, mm	K _{vs} , м³/ч	PN, бар	ΔP _{max} , бар ¹⁾	Кодовый номер
		0,25	0,25		065B3050 R
		0,4			065B3051 R
		0,63			065B3052 R
	15	1,0			065B3053 R
A		1,6			065B3054 R
		2,5	25	16	065B3055 R
		4,0	25	10	065B3056 R
	20	6,3			065B3057 R
	25	10			065B3058 R
	32	16			065B3059 R
	40	25			065B3060 R
	50	40			065B3061 R
	65	55			065B3500 R
	80	100			065B3501 R
	100	160		8	065B3502 R
ė.	125	250		0	065B3503 R
	150	320	16(25 ²⁾)		065B3504 R
	200	450	10(2327)		065B3505 R
	250	630		10(6)	065B3506 R
0 0 0	300	990		8	065B3507 R
	350	1300		7	065B3509 R
	400			6	065B3508 R

¹⁾ ДР_{тах} — максимально допустимый перепад давления, преодолеваемый электроприводом при закрытии и работе клапана. В скобках указано значение для привода с меньшим усилием.

²⁾ Возможное исполнение под заказ

Клапан регулирующий седельный проходной VFM-2R

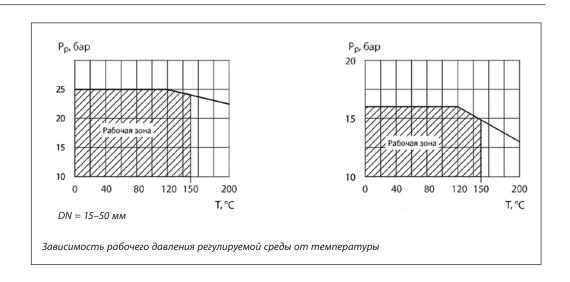
Номенклатура и коды для оформления заказа

Дополнительные принадлежности

Наименование	Кодовый номер		
Подогреватель штока для клапанов Ридан DN15-200	065Z7020 R		
Адаптер для присоединения клапанов VFM-2R DN 15–50 к электроприводам ARV-1000R и ARE-1000VFM-R	065Z0311 R		

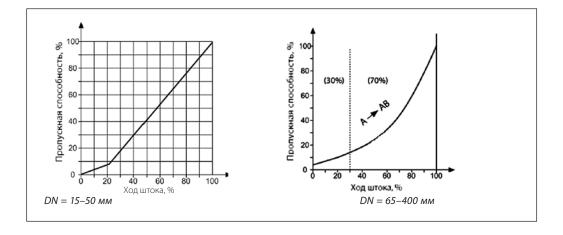
Адаптер для присоединения клапанов VFM-2R DN 65–400 к электроприводам ARV(E)-1800R, ARV(E)-3000R, ARV(E)-10KR не требуется.

Запасные детали


Наименование	Кодовый номер
Сальниковый блок для клапана Ридан VFM-2R DN 15–50	065B2070 R
Уплотнение сальниковое Ридан VFM-2R DN 65–80; VF-3R DN 15–80 –5+150 °C	065B2070 R1
Уплотнение сальниковоее Ридан VFM-2R; VF-3R DN 100–300 –5+150 °C	065B2070 R2

Технические характеристики

Условный проход DN, мм	15	20	25	32	40	50	65	80	100	125	150	200	250	300	350	400
Пропускная способность Қ _{уѕ} , м³/ч	0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0	6,3	10	16	25	40	55	100	160	250	320	450	630	990	1300	1960
Ход штока, мм	5	5	7	10	10	10	2	.0			40				70	
Динамический диапазон регулирования			50:1								>:	50:1				
Характеристика регурирования		Двой	іная ли	нейна	Я				J	Тиней н	ная-лоі	гарифи	иическ	ая		
Коэффициент начала кавитации Z			≥ 0,5	,			0,45	0,4		0,35		0,25	0,21		0,2	
Протечка через закрытый клапан, % от K _{vs}	0,05				0,01											
Условное давление PN, бар	25				16(25 ¹⁾)											
Рабочая среда	Вода или	30 % в	зодный	і́ раств	вор гли	коля		Вода или 50 % водный раствор гликоля								
рН среды								7–1	0							
Температура регулируемой среды Т, °C	2150					-5150					0150					
Присоединение	Фланцевое, PN = 25 бар по стандарту EN 1092-2				2-2	Фланцевое, PN = 16 бар по стандарту EN 1092-2										
Материалы																
Корпус клапана и крышка	Высокопрочный чугун EN-GJS-400-18-LT (GGG 40)			Высокопрочный чугун с шаровидным графитом QT450-10					-10							
Седло, золотник и шток	Нержавеющая сталь															
Уплотнение сальника		EPDM					PTFE, FPM									

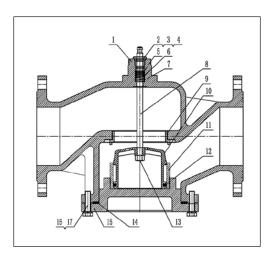

¹⁾ Возможное исполнение под заказ

Условия применения

Характеристики регулирования

Условия применения

При монтаже клапана необходимо убедиться, чтобы направление движения регулируемой среды совпадало с направлением стрелки на его корпусе.


Перед монтажом клапана трубопроводная система должна быть промыта, соединительные элементы трубопровода и клапана размещены на одной оси, клапан защищен от напряжений со стороны трубопровода.

Клапан может быть установлен в любом положении, кроме положения электроприводом вниз.

Необходимо предусмотреть достаточное пространство вокруг клапана с электроприводом для их демонтажа и обслуживания.

Электропривод может быть повернут вокруг своей оси в удобное для обслуживания положение, для чего следует ослабить крепление привода на клапане.

Устройство клапана *(DN 65–300)*

- 1 корпус клапана;
- 2, 3, 4 сальниковый блок;
- 5 уплотнительные кольца;
- 6 опорное кольцо;
- 7 пружина;
- 8 шток;
- 9 седло;
- 10 конус (разгружен по давлению);
- 11 направляющая камеры разгрузки;
- 12 уплотнительные кольца;
- 13 гайка штока;
- 14 прокладка;
- 15 крышка клапана;
- 16 пружинная шайба;
- 17 болт.

Выбор типоразмера клапана

Пример

Требуется выбрать регулирующий VFM-2R для центрального теплового пункта (ЦТП).

Исходные данные

Теплоноситель: вода с температурой $T_1 = 150$ °С, и давлением насыщенных паров $P_{\text{нас}} = 3,86$ бар (табличное значение, зависит от температуры рабочей среды).

Избыточное давление теплоносителя перед клапаном: $P_1 = 7$ бар;

Предварительно заданный перепад давления на регулирующем клапане: $\Delta P_{\rm кл}$ =1,2 бар. Перепад давления на клапане не должен быть больше $\Delta P_{\rm max}$ максимально допустимого перепада давления, преодолеваемого электроприводом.

Расчетный расход теплоносителя: $G_p = 40 \text{ м}^3/\text{ч}$.

Решение

Рассчитаем требуемую пропускную способность клапана по формуле:

$$K_V=$$
 1,2 $imes rac{G_{
m p}}{\sqrt{\Delta P_{
m KA}}}$, где

1,2 — коэффициент запаса;

 G_p — расчетный расход теплоносителя через клапан, м³/ч;

 $\Delta P_{\rm KЛ}$ — заданный перепад давления на клапане, бар.

$$K_V = 1.2 \times \frac{40}{\sqrt{1.2}} = 43.8 \text{ m}^3/\text{q}$$

Предварительно выбираем клапан со значением $K_{v,s}$, которое является ближайшим и больше расчетного значения K_v :

VFM-2R, PN 16, DN 65, $K_{vs} = 55 \text{ м}^3/\text{ч}$, с коэффициентом начала кавитации Z = 0.4.

При работе клапана не должен возникать высокий шум и кавитация. Проведем проверку выбранного клапан.

Рассчитаем предельно допустимый перепад давления на клапане для работы без кавитации:

$$\Delta P_{\text{кл. пред}} = Z \cdot (P_1 - P_{\text{Hac}}) = 0.45 \cdot (7 - 3.86) = 1.4 \text{ бар, где:}$$

Z — коэффициент начала кавитации;

 ${\sf P}_1$ — избыточное давление теплоносителя перед регулирующим клапаном, бар;

 $P_{\text{нас}}$ — избыточное давление насыщенных паров воды в зависимости от ее температуры T_1 , бар.

$$\Delta P_{\text{кл пред}} > \Delta P_{\text{кл,}}$$

значит клапан выбран верно и может работать при заданном перепаде давления без кавитации.

Рекомендуемая скорость прохождения теплоносителя во входном сечении клапана для тепловых пунктов жилого фонда от 1,5 до 3,5 м/с. Для всех остальных тепловых пунктов от 1,5 до 5 м/с.

Проверка клапана на шумообразование производится по формуле:

$$V = G_p \cdot (18,8/DN)^2,$$

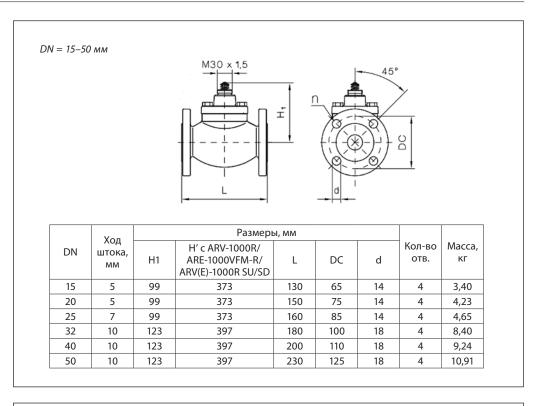
где:

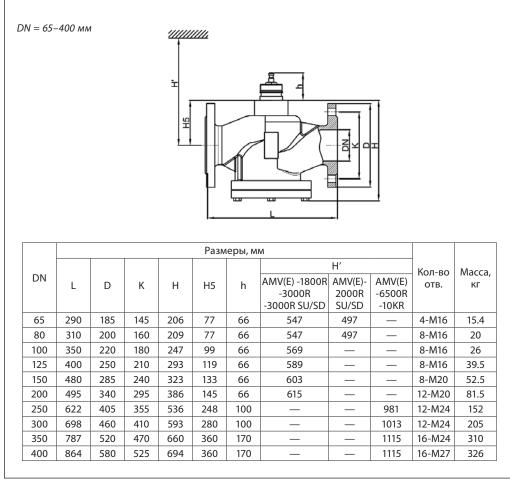
V — скорость теплоносителя во входном сечении клапана, м/с;

18,8 — переводной коэффициент;

DN — диаметр клапана, мм.

$$V = 40 \cdot (18,8/65)^2 = 3,3 \text{ M/c}.$$


Для ЦТП скорость теплоносителя допустима.


Итог

Выбираем код 065В3500R, регулирующий клапан Ридан VFM-2R, PN16, DN65, $K_{\rm vs}$ 55.

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»


Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», поготип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Клапаны регулирующие седельные: проходной VRB-2R и трехходовой VRB-3R

Описание и область применения

Регулирующие клапаны VRB-2R и VRB-3R предназначены для применения преимущественно в системах тепло- и холодоснабжения зданий. В качестве регулируемой среды может быть использован 50 %-й водный раствор гликоля.

Основные характеристики

- Условный проход: DN = 15-50 мм.
- Условное давление: PN = 25 бар.
- Регулируемая среда: вода или 50 %-й водный раствор гликоля.
- Температура регулируемой среды:

 25...130 °C (при температуре ниже 0 °C требуется подогреватель штока 065Z7020R).
- Пропускная способность: $K_{VS} = 0.63-30 \text{ м}^3/\text{ч}.$
- Комбинируются с приводами AMV(E)-1000R.
- Присоединение к трубопроводу резьбовое, внутренняя резьба ISO 228-1.

Номенклатура и коды для оформления заказа

Пример заказа. Трехходовой клапан VRB-3R, DN = 15 мм, K_{VS} = 4,0 м³/ч, PN = 25 бар, T_{Macc} = 130 °C. Электропривод, питание на 230 В: – клапан VRB-3R, DN = 15 мм, 065Z0235R, 1 шт.; – электропривод AMV-1000R, 082G3024R, 1 шт.

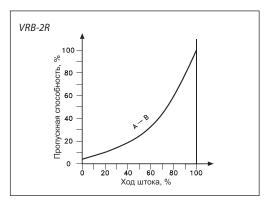
Клапаны VRB-2R и VRB-3R

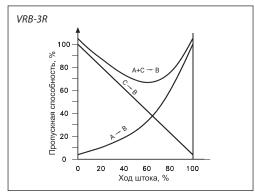
DN	К _{уs} , м³/ч	Кодовы	й номер			
DIN	N _{VS} , W / 4	VRB-2R	VRB-3R			
	0,63	065Z0231R	065Z0211 R			
	1,0	065Z0232 R	065Z0212 R			
15	1,6	065Z0233 R	065Z0213 R			
	2,5	065 Z0234 R	065Z0214 R			
	4,0	065Z0235 R	065Z0215 R			
20	6,3	065Z0236 R	065Z0216 R			
25	8,0	065Z0237 R	065Z0217 R			
32	12,0	065Z0238 R	065Z0218 R			
40	20,0	065Z0239 R	065Z0219 R			
50	30,0	065Z0240 R	065Z0220 R			

Дополнительные принадлежности

Наименование	Кодовый номер
Подогреватель штока для клапанов Ридан DN15-200	065Z7020 R

Запасные детали


Наименование	Кодовый номер		
Cальниковое уплотнение Ридан VRB-2R VRB-3R DN 15–50	065B2070 R7		


Технические характеристики

Условный проход DN, мм			15			20	25	32	40	50
Пропускная способность K_{VS} , $M^3/4$	0,63	1,0	2,5	4,0	6,3	8,0	12,0	20,0	30,0	
Ход штока, мм				1	3				1	9
Динамический диапазон регулирования					>5	0:1				
Характеристика регулирования		для прох прохода		B);						
Коэффициент начала кавитации Z					≥	0,5				
Протечка через закрытый клапан, % от KVS			Порт А-	В и А-АВ і	не более	0,01; пор	т В-АВ не	более 2		
Условное давление PN, бар					2	5				
Макс. перепад давления на клапане предолеваемый приводом ΔРкл., бар	5 3,5 3									3
Рабочая среда			Вода или 50 % водный раствор гликоля							
рН среды					7-	10				
Температура регулируемой среды T, °C					-25.	130				
Присоединение				Внутр	енняя ре	езьба ISO	228-1			
Материалы										
Корпус, шток, конус, седло				Н	ержавек	щая стал	1Ь			
Уплотнение сальника					PTFE,	EPDM				

Характеристики регулирования

Монтаж

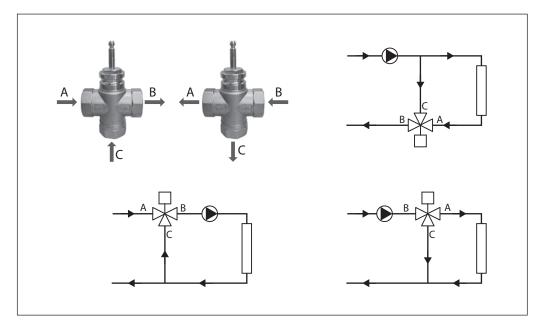
При монтаже 2-ходового клапана VRB-2R необходимо убедиться, что направление движения теплоносителя совпадает со стрелкой на корпусе клапана. При монтаже 3-ходового клапана VRB-3R в качестве смесительного клапана необходимо убедиться, что вход теплоносителя осуществляется через порты A и C, а выход теплоносителя через порт B.

При монтаже 3-ходового клапана VRB-3R в качестве разделительного клапана необходимо убедиться, что вход теплоносителя осуществляется через порт B, а выход теплоносителя через порты A и C.

Перед монтажом клапана трубопроводная система должна быть промыта, соединительные элементы трубопровода и клапана размещены на одной оси, клапан защищен от напряжений со стороны трубопровода.

Клапан с электроприводом может быть установлен в любом доступном положении согласно инструкции по монтажу электропривода. Необходимо обеспечить достаточно свободное пространство вокруг клапана с приводом для их демонтажа и обслуживания.

Клапан и привод запрещается размещать в помещениях со взрывоопасной атмосферой. Температура окружающего воздуха при монтаже и эксплуатации клапана с электроприводом должна быть в пределах допустимых температур согласно техническим характеристикам электропривода.


Электропривод может быть повернут вокруг оси штока клапана в любое удобное для обслуживания положение, после чего он должен быть зафиксирован на клапане согласно инструкции по монтажу.

Смешение или разделение потоков

Трехходовой клапан может быть использован как для смешения, так и для разделения потоков.

Если трехходовой клапан установлен в качестве смесительного клапана, то порт A и C являются входными, а порт B — выходным.

Трехходовой клапан также может быть установлен в качестве отводного клапана для разделения потоков. В таком случае порт В является входным, а порт А и С — выходными.

Выбор типоразмера клапана

Пример

Исходные данные

Расход: 5 м³/ч.

Перепад давления в системе: 0,5 бар. Теплоноситель: вода с температурой $T_1 = 130 \, ^{\circ}\text{C}$ и давлением насыщенных паров $P_{\text{нас}} = 1,76$ бар (табличное значение, зависит от температуры рабочей среды);

Избыточное давление теплоносителя перед клапаном: $P_1 = 6$ бар;

Решение

Перепад давления на клапане выбирается таким образом, чтобы его авторитет по отношению к суммарной потере давления на системе и клапане был в диапазоне от 0,3 до 0,7 (предпочтительно 0,4). Важно, чтобы перепад давления на клапане не превышал ΔP_{max} — максимально допустимого перепада давления, преодолеваемого электроприводом.

Авторитет клапана выражается уравнением:

$$a=rac{\Delta P_1}{\Delta P_1+\Delta P_2}$$
, где

 ΔP_1 — перепад давления при полностью открытом клапане:

 ΔP_2 — перепад давления во всем остальном регулируемом участке.

Возьмем $\Delta P_{\kappa n} = 0.5$ бар.

Рассчитаем требуемую пропускную способность клапана по формуле:

$$K_V=1,2 imesrac{G_{
m p}}{\sqrt{\Delta P_{
m KJ}}}$$
, где

1,2 — коэффициент запаса;

 G_p — расчетный расход теплоносителя через клапан, м³/ч;

 $\Delta P_{\rm kn}$ — заданный перепад давлений на клапане, бар.

$$K_{\rm V} = 1.2 \times \frac{5}{\sqrt{0.5}} = 8 \, \text{m}^3/\text{q}$$

Выбираем клапан VRB-3R, PN25, DN25, ${\rm K_{VS}}=8~{\rm M}^3/{\rm 4}$. Потеря давления в полностью открытом клапане составляет:

$$\Delta P_{\text{кл.факт.}} = \left(\frac{G}{K_{\text{ns}}}\right)^2 = \left(\frac{5}{8}\right)^2 = 0.39$$

Авторитет выбранного клапана равен:

$$a = \frac{0.39}{0.39 + 0.5} = 0.4$$

Зная давление перед клапаном и температуру теплоносителя, необходимо проверить клапан на кавитацию и шум. Рассчитаем предельно допустимый перепад давления на клапане для работы без кавитации:

$$\Delta P_{KR,RDP} = Z \cdot (P_1 - P_{HaC}) = 0.5 \cdot (6-1.76) = 2.12 \text{ Gap},$$

где:

Z — коэффициент начала кавитации;

 P_1 — избыточное давление теплоносителя перед регулирующим клапаном, бар;

 $P_{\text{нас}}$ — избыточное давление насыщенных паров воды в зависимости от ее температуры T_1 , бар.

$$\Delta P_{\kappa \pi \text{ пред}} > \Delta P_{\kappa \pi'}$$

значит клапан выбран верно и может работать при заданном перепаде давления без кавитации.

Рекомендуемая скорость прохождения теплоносителя во входном сечении клапана для тепловых пунктов жилого фонда от 1,5 до 3,5 м/с для всех остальных тепловых пунктов от 1,5 до 5 м/с.

Проверка клапана на шумообразование производится по формуле:

$$V = G_{D} \cdot (18.8/DN)^{2}$$

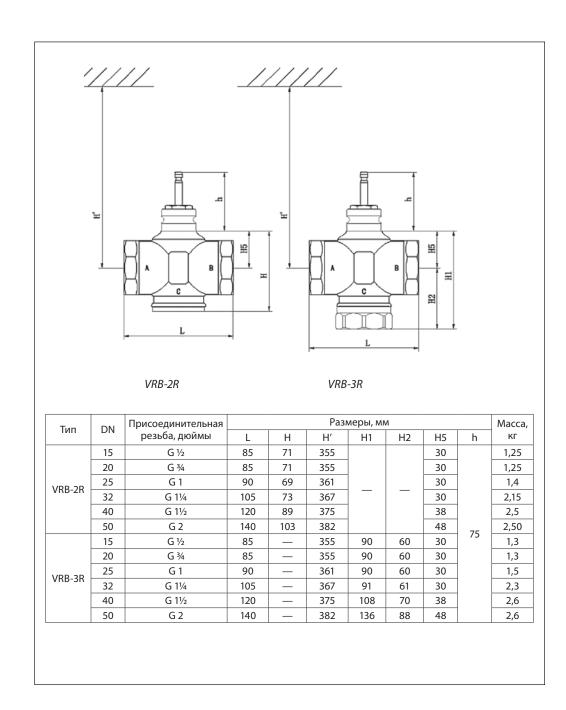
где:

V — скорость теплоносителя во входном сечении клапана, м/с;

18,8 — переводной коэффициент;

DN — диаметр клапана, мм.

$$V = 5 \cdot (18,8/25)^2 = 2,8 \text{ m/c}.$$


Для ЦТП скорость теплоносителя допустима.

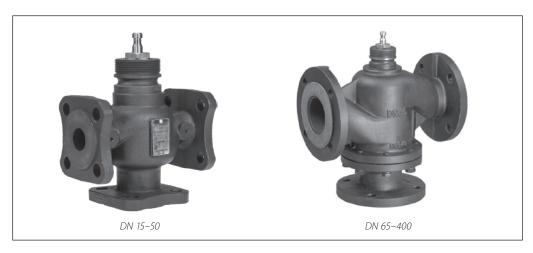
Итог

Выбираем код **065Z0217R**, регулирующий клапан Ридан VRB-3R, PN 25 DN 25, $K_{\rm VS}$ 8.

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217.


Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Клапан регулирующий седельный трехходовой VF-3R (PN 16)

Описание и область применения

Регулирующий клапан Ридан VF-3R предназначен для применения в системах тепло- и холодоснабжения зданий.

Клапан может сочетаться со следующими электрическими приводами Ридан:

- ARV(E)-1000R (DN 15-50),
- ARV(E)-1000R SU/SD (DN 15-50),
- AMV(E)-1800R (DN 65-80),
- AMV-2000R SU/SD (DN 65-80),
- AME-2000R SU/SD (DN 65-80),
- AMV(E)-3000R (DN 100-150),
- AMV(E)-3000R SU/SD (DN 100-150),
- AMV(E)-6500R (DN 100-250),
- AMV(E)-10KR (DN 100-300);
- AMV(E)-26KSR (DN 350-400).

Особенности

- Низкий показатель протечки 0,01% от ${\rm K_{VS}}$ для ${\rm DN}=15{\rm -}400$ мм.
- Быстрый монтаж приводов.
- Могут использоваться как для смешения, так и для разделения потоков.

Основные характеристики

- Условный проход: DN = 15-400 мм.
- Пропускная способность: $K_{VS} = 0,63-1960 \text{ м}^3/\text{ч}$.
- Условное давление: PN = 16 бар.
- Температура воды или 50 %-го водного раствора гликоля: −5...150 °С (при температуре ниже 0 °С требуется подогреватель штока 065Z7020R); 0...150 °С для DN 250−400.
- Присоединение к трубопроводу: PN = 16 бар фланцевое EN 1092-2.

Номенклатура и коды для оформления заказа

Пример заказа. Трехходовой клапан на смешение потоков, DN = 65 мм, $K_{VS} = 52 \text{ м}^3/\text{ч}$, PN = 16 бар, $T_{\text{макс}} = 150 \,^{\circ}\text{C}$, фланцевое соединение, электропривод питание на 230 В:

– клапан VF-3R DN65 кодовый номер 065Z3361R, 1 шт; – электропривод AMV-1800R 082G3443R1, 1 шт.

Трехходовой клапан VF-3R

DN, mm	K _{VS} , м³/ч	Кодовый номер
15	0,63	065Z3351R2
15	1	065Z3352R2
15	1,6	065Z3353R2
15	2,5	065Z3354R2
15	4	065Z3355R2
20	6,3	065Z3356R2
25	10	065Z3357R2
32	16	065Z3358R2
40	25	065Z3359R2
50	40	065Z3360R2
65	55	065Z3361R
80	100	065Z3362R
100	160	065Z3363R
125	250	065B3125R
150	320	065B3150R
200	450	065B4200R
250	630	065B4250R
300	990	065B4300R
350	1300	065B4350R
400	1960	065B4400R

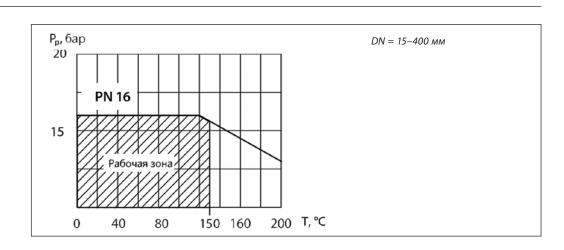
Клапан регулирующий седельный трехходовой VF-3R (PN 16)

Номенклатура и коды для оформления заказа

Дополнительные принадлежности

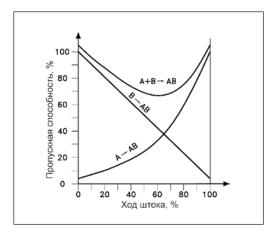
Наименование	Кодовый номер
Подогреватель штока для клапанов Ридан DN15-200	065Z7020R

Запасные детали


Наименование	Кодовый номер
Сальниковое уплотнение Ридан VFM-2R DN 65-80; VF-3R DN 15-80	065B2070R1
Сальниковое уплотнение Ридан VFM-2R; VF-3R DN 100-300	065B2070R2

Технические характеристики

Условный проход DN, мм	15	20	25	32	40	50	65	80	100	125	150	200	250	300	350	400
	_	_			25		55	100	160	250	320	450				
Пропускная способность K _{VS} , м ³ /ч	0,6; 1; 1,6; 2,5; 4	6,3	10	16		40							630	990	1300	1960
Ход штока, мм		13 19					20 40							70	-	
Динамический диапазон регулирования		>50:1														
Характеристика регулирования		Пог	-anuh	MINUAC	ו) פבעי		оуол:	- Δ_ΔΓ	3). LIND	ДЙЦЗС	. (nna r	проход		3)	-	-
Коэффициент начала кавитации Z			ариф 0,5	МИЧЕС	.кал (д	діл пр	0,45	_	חושונ , <i>ו</i> כ	0,35		0,25	0,21		0,2	
			0,5				0,45	0,4		0,33		0,25	0,21		0,2	
Протечка через закрытый клапан, % от K _{VS}				Порт /	4 -Ви	A-AB ⊦	не бол	ee 0,0	1; пор	т В-А[3 не бо	лее 2				
Условное давление PN, бар		16/25														
Максимальный перепад давления на	клапане (смесит	ельнь	ій), пр	еодол	тевае	мый э	лектр	оприг	водом	при	смеше	нии по	токов	в клап	ане, ба	р
ARV(E)-1000R/ARV(E)-1000R SU/SD			4				_	_	_	_	_	_	_	_	_	_
AMV(E)-1800R/AMV(E)-2000R SU/SD		-	_				4	3,5	_	_	_	_	_	_	_	_
AMV(E)-3000R/AMV(E)-3000R SU/SD							_	_	3,5	2	1,2	_	—	_	_	_
AMV(E)-6500R							_	_	4,5	4	3,5	2,9	1,2	_	-	_
AMV(E)-10KR							_	_	5	5	4	3,5	2,5	1,2	-	_
AMV(E)–26KSR								_	_	_	_	_	_	_	2,1	1,5
Максимальный перепад давления на	клапане (раздел	итель	ный),	преод	олева	аемый	і элек	тропр	иводо	ом прі	и разд	елении	1 поток	ков в кл	папане	, бар
ARV(E)-1000R/ARV(E)-1000R SU/SD			1				_	_	_	_	_	_	-	_	_	_
AMV(E)-1800R/AMV(E)-2000R SU/SD		-					4	3,5	_	_	_	_	_	_	_	_
AMV(E)-3000R/AMV(E)-3000R SU/SD							_	_	3,5	2	1,2	_	-	_	-	_
AMV(E)-6500R							_	_	4,5	4	3,5	2,9	1,2	_	_	_
AMV(E)-10KR		_	_				_	_	5	5	4	3,5	2,5	1,2	_	_
AMV(E)–26KSR							_	_	_	_	_	_	_	_	2,1	1,5
Рабочая среда					Вода	или 50) % вс	дный	раств	ор гл	иколя					
рН среды								7–10								
Температура регулируемой среды T, °C		-5150 (-10130 ¹) 0150 (-10130 ¹))1)						
Присоединение		Фланцы, PN = 16 бар, по EN1092-2														
Материалы																
Корпус	Высокопрочный чугун с шаровидным графитом QT450-10															
Шток, золотник		Нержавеющая сталь														
		Нержавеющая сталь РТFE, FPM														


¹ Возможное исполнение под заказ.

Условия применения

Характеристики регулирования

Монтаж

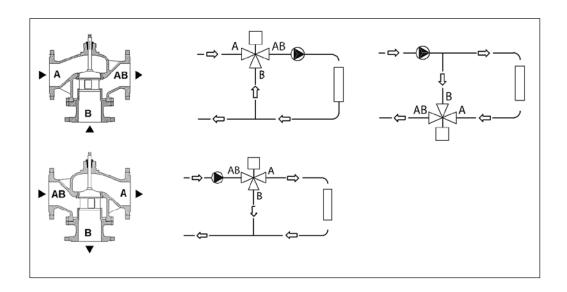
Перед монтажом клапана трубопроводная система должна быть промыта, соединительные элементы трубопровода и клапана размещены на одной оси, клапан защищен от напряжений со стороны трубопровода.

Трубопроводы, на которые устанавливается клапан, должны быть проложены ровно, надежно зафиксированы и защищены от вибрации.

Клапаны DN15–50 имеют фланцы квадратной формы. Для монтажа клапана на трубопровод применяются стандартные прокладки и ответные фланцы круглой формы.

Для стабилизации потока перед и после клапана, рекомендуется устанавливать его на прямых участках трубопровода. Для клапанов работающих в режиме регулирования, DN100 и более требуется выдержать прямой участок, не менее 5–10D клапана. На выходе допускается не делать прямой участок. Прямой участок требуется для стабилизации потока, чтобы исключить различные завихрения, области изменения давления и прочее. Если клапан работает в режиме переключения потоков, то достаточно прямого участка 1–2D клапана на входе и выходе...

Смешение или разделение потоков


Трехходовой клапан может быть использо ван как для смешения, так и для разделения потоков.

Внимание! Клапан VF-3R рекомендуется применять для смешения потоков.

Если трехходовой клапан установлен в качестве смесительного клапана, то порты A и

В являются входными, а порт AB — выходным. Такой клапан установливается для смешения потоков.

Трехходовой клапан также может быть установлен в качестве отводного клапана для разделения потоков. В этом случае порт АВ является входным, а порты А и В — выходными.

Выбор типоразмера клапана

Пример

Требуется выбрать регулирующий клапан для нижеследующих условий.

Исходные данные

Расход: 6 м³/ч.

Перепад давления в системе: 0,5 бар. Теплоноситель: вода с температурой $T_1 = 150~^{\circ}\text{C}$, и давлением насыщенных паров $P_{\text{HaC}} = 3,86$ бар (табличное значение, зависит от температуры рабочей среды).

Избыточное давление теплоносителя перед клапаном: $P_1 = 6$ бар;

Решение

Перепад давления на клапане выбирается таким образом, чтобы его авторитет по отношению к суммарной потере давления на системе и клапане был в диапазоне от 0,3 до 0,7 (предпочтительно 0,4).

Перепад давления на клапане не должен быть больше ΔP_{max} максимально допустимого перепада давления, преодолеваемого электроприводом.

Авторитет клапана выражается уравнением:

$$a = rac{\Delta ext{P1}}{\Delta ext{P1} + \Delta ext{P2}}$$
 , где

 ΔP_1 — перепад давления при полностью от- крытом клапане;

 ΔP_2 — перепад давления во всем остальном регулируемом участке.

Возьмем $\Delta P_{\rm кл} = 0,5$ бар.

Рассчитаем требуемую пропускную способность клапана по формуле:

$$K_V=1$$
,2 $imes rac{G_{
m p}}{\sqrt{\Delta P_{
m \scriptscriptstyle KJ}}}$, где

1,2 — коэффициент запаса;

 G_p — расчетный расход теплоносителя через клапан, м³/ч;

 $\Delta P_{\rm KЛ}$ — заданный перепад давлений на клапане, бар.

$$K_V = 1.2 \times \frac{6}{\sqrt{0.5}} = 10 \text{ m}^3/\text{y}$$

Выбираем клапан VF-3R, PN16, DN25 с $K_{VS} = 10 \text{ m}^3/4$.

Потеря давления в полностью открытом клапане составляет:

$$\Delta P_{\text{кл.факт.}} = \left(\frac{G}{K_{ne}}\right)^2 = \left(\frac{6}{10}\right)^2 = 0.36$$

Авторитет выбранного клапана равен:

$$a = \frac{0,36}{0.36 + 0.5} = 0.4$$

Зная давление перед клапаном и температуру теплоносителя, необходимо проверить клапан на кавитацию и шум.

Рассчитаем предельно допустимый перепад давлений на клапане для работы без кавитации:

$$\Delta P_{KJ, RDEJ} = Z \cdot (P_1 - P_{Hac}) = 0.5 \cdot (6 - 3.86) = 1 \text{ Gap},$$

где

Z — коэффициент начала кавитации;

 P_1 — избыточное давление теплоносителя перед регулирующим клапаном, бар;

 P_{hac} — избыточное давление насыщенных паров воды в зависимости от ее температуры T_1 , бар.

$$\Delta P_{KJI} \prod_{DDEJ} > \Delta P_{KJI}$$

значит клапан выбран верно и может работать при заданном перепаде давления без кавитации.

Рекомендуемая скорость прохождения теплоносителя во входном сечении клапана для тепловых пунктов жилого фонда от 1,5 до 3,5 м/с для всех остальных тепловых пунктов от 1,5 до 5 м/с.

Проверка клапана на шумообразование производится по формуле:

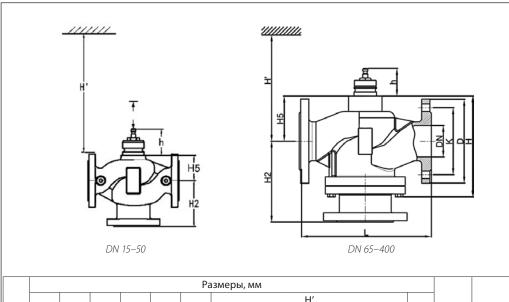
$$V = G_p \cdot (18,8/DN)^2$$
, где

V — скорость теплоносителя во входном сечении клапана, м/с;

18,8 — переводной коэффициент;

DN — диаметр клапана, мм.

$$V = 6 \cdot (18,8/25)^2 = 3.4 \text{ m/c}.$$


Для ЦТП скорость теплоносителя допустима.

Итог

Выбираем код 065Z3357R, регулирующий клапан Ридан VF-3R, PN 16, DN 25, ${\rm K_{VS}}$ 10 .

Габаритные и присоединительные размеры

Размеры, мм														
									H'					
DN	L	D	К	н	H5	H2	ARV(E) -1000R/ ARV(E) -1000R SU/SD	AMV(E) -2000R SU/SD	AMV(E) -1800R -3000R -3000R SU/SD	AMV(E) -6500R -10KR	AMV(E) -26KSR	h	Кол-во отв.	Macca, кг
15	130	95	65	128	39	65	393	_	_	_	_	66	4-M12	6,75
20	160	105	75	143	42	75	396	_	_	_	_	66	4-M12	7,05
25	160	115	85	152,5	46,5	80	400	_	_	_	_	66	4-M12	8,5
32	180	140	100	178,5	56,5	90	410		_		_	66	4-M16	9,8
40	200	150	110	194	62	100	416	_	_	_	_	66	4-M16	12
50	230	165	125	212	63	115	417		_	_	_	66	4-M16	13,7
65	290	185	145	206	77	183	_	497	_	_	_	66	4-M16	18
80	310	200	160	209	76	193		496	_	_	_	66	8-M16	24
100	350	220	180	247	99	203	_		570	_	_	66	8-M16	31
125	400	250	210	293	119	236	_	_	550	_	_	66	8-M16	44
150	480	285	240	323	133	254			603	_	_	66	8-M20	61
200	495	340	295	386	145	307	_		_	910	_	66	12-M20	91
250	622	405	355	536	248	392	_	_	_	1013	_	100	12-M24	163
300	698	460	410	593	280	389	_		_	1045	_	100	12-M24	221
350	787	520	470	660	360	300	_	_	_	_	1115	170	16-M24	345
400	864	580	525	694	360	340	_		_	_	1115	170	16-M27	350

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», поготип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Клапан регулирующий седельный проходной VFS-2R (для пара)

Описание и область применения

Регулирующий клапан VFS-2R предназначен для применения преимущественно в системах теплоснабжения зданий при высоких температуре и давлении регулируемой среды (воды или пара).

VFS-2R может быть также установлен в системах холодоснабжения, где в качестве регулируемой среды используется 50 %-й водный раствор гликоля.

Основные характеристики

- Условный проход: DN = 15-200 мм.
- Пропускная способность: $K_{VS} = 0,63-450 \text{ м}^3/\text{ч}$.

- Условное давление: PN = 16 бар.
- Логарифмическая характеристика.
- Рабочая среда: вода/50 %-й раствор гликоля/пар (макс. перепад на клапане 8 бар).
- Температура: 1-220 °С;
- Фланцевые соединения: PN = 16 бар.
- Клапан используется с приводами:
- AMV(E)-1800R (DN 15-80);
- AMV-2000R SU/SD (DN 15-80);
- AME-2000R SU/SD (DN 40-80);
- AMV(E)-3000R (DN 100-200);
- AMV(E)-3000R SU/SD (DN 100-200).

Номенклатура и коды для оформления заказа

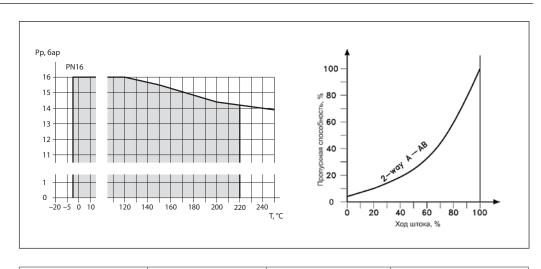
Пример заказа. Регулирующий двухходовой клапан, DN = 80 мм, K_{VS} = 100 м 3 /ч, PN = 16 бар, T_{MaKC} = 220 °C, фланцевое соединение. Электропривод, питание на 230 В: — клапан VFS-2R DN 80, 065B33**80R**, 1 шт; — электропривод AMV-1800R 082G344**3R1**, 1 шт.

Клапан VFS-2R

DN, mm	K _{VS} , м³/ч	Кодовый номер
15	0,63	065B1511R2
15	1	065B1512R2
15	1,6	065B1513R2
15	2,5	065B1514R2
15	4	065B1515R2
20	6,3	065B1520R2
25	10	065B1525R2
32	16	065B1532R2
40	25	065B1540R2
50	40	065B1550R2
65	55	065B3365R
80	100	065B3380R
100	160	065B3400R
125	250	065B3401R
150	320	065B3402R
200	450	065B3403R

Клапан регулирующий седельный проходной VFS-2R (для пара)

Номенклатура и коды для оформления заказа


Запасные детали

Наименование	Кодовый номер
Сальниковое уплотнение Ридан VFS-2R DN 15–80	065B2070R3
Сальниковое уплотнение Ридан VFS-2R DN 100–200	065B2070R4

Технические характеристики

Условный проход DN, мм			15			20	25	32	40	50	65	80	100	125	150	200
Пропускная способность K_{VS} , $M^3/4$	0,63	1	1,6	2,5	4	6,3	10	16	25	40	55	100	160	250	320	450
Ход штока, мм				1.	3				1	9	2	20	40			
Динамический диапазон регулирования		>50:1														
Характеристика регулирования							Л	огари	фмич	еская						
Коэффициент начала кавитации Z					0	,5					0,45	0,4		0,35		0,25
Протечка через закрытый клапан, % от K _{VS}							He	более	0,019	6 от K	VS					
Условное давление PN, бар									16							
Рабочая среда					Пар	, вода	или 5	0 %-й	водні	ый ра	створ	гликол	пя			
рН среды									7–10							
Температура регулируемой среды T, °C								1	220							
Присоединение						Фла	анцы,	PN =	16 бар	, по Еі	N1092	-2				
Материалы																
Корпус	Высокопрочный чугун с шаровидным графитом QT450-10															
Шток, конус, седло	Нержавеющая сталь															
Уплотнение сальника								PT	FE, FPI	М						

Условия применения и характеристика регулирования

DN, mm	Ход штока, мм	AMV(E)-1800R/ AMV(E)-2000R SU/SD	AMV(E)-3000R		
		Максимально допустим	ный перепад давления, бар		
15		8	_		
20	12	8	_		
25	13	8	_		
32		8	_		
40	10	8	_		
50	19	8	_		
65	20	8	_		
80	20	8	_		
100		_	8		
125	10	_	8		
150	40	_	8		
200		_	8		

Монтаж

Перед монтажом клапана трубопроводная система должна быть промыта, соединительные элементы трубопровода и клапана размещены на одной оси, клапан защищен от механических напряжений со стороны трубопровода.

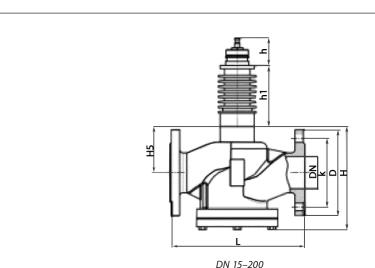
При монтаже клапана на пар необходимо убедиться, что направление движения регулируемой среды совпадает с направлением стрелки на корпусе клапана.

Внимание!

При использовании клапана на жидкой среде его необходимо установить так, чтобы стрелка на корпусе указывала ПРОТИВ потока.

Клапан с электроприводом может быть установлен в любом доступном положении согласно инструкции по монтажу электропривода. Клапан не может быть установлен

электроприводом вниз. Необходимо обеспечить достаточное свободное пространство вокруг клапана с приводом для их демонтажа и обслуживания.


Клапан и привод запрещается размещать в помещениях со взрывоопасной атмосферой.

Температура окружающего воздуха при монтаже и эксплуатации клапана с электроприводом должна быть в пределах допустимых температур согласно техническим характеристикам электропривода.

Электропривод может быть повернут вокруг оси штока клапана в любое удобное для обслуживания положение, после чего зафиксирован на клапане согласно инструкции по монтажу.

Клапаны DN 15–50 имеют фланцы квадратной формы. Для монтажа клапана на трубопровод применяются стандартные прокладки и ответные фланцы круглой формы.

Габаритные и присоединительные размеры

					Размерь	I, MM					
						H	11				
DN	DN L D K		К	(Н Н		AMV(E) -1800R -3000R -3000R SU/SD	OR AMV(E) OR -2000R OR SU/SD		h	Кол- во отв.	Масса, кг
15	130	95	65	128	39	639	589		66	4	8,2
20	160	105	75	143	42	642	592		66	4	8,4
25	160	115	85	152,5	46,5	647	597	130	66	4	8,6
32	180	140	100	178,5	56,5	657	607	130	66	4	10,6
40	200	150	110	194	62	662	612		66	4	11,7
50	230	165	125	212	63	663	613		66	4	15,8
65	290	185	145	206	77	692	642		66	4	18,4
80	310	200	160	209	76	692	642		66	8	23
100	350	220	180	247	99	714	_	145	66	8	29
125	400	250	210	293	119	734		143	66	8	42,5
150	480	285	240	323	133	748	_		66	8	55,5
200	495	340	295	386	145	760	_		66	12	84,5

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», поготип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Клапан регулирующий седельный проходной VF-2R

Описание и область применения

Регулирующий клапан VF-2R предназначен для применения в системах тепло- и холодоснабжения зданий.

Клапан может сочетаться со следующими электрическими приводами Ридан:

- ARV(E)-1000R (DN 15-50);
- ARV(E)-1000R SU/SD (DN 15-50),
- AMV(E)-1800R (DN 65-80),
- AMV(E)-2000R SU/SD (DN 65-80),
- AMV(E)-3000R (DN 100-200);
- AMV(E)-3000R SU/SD (DN 100-200);
- AMV(E)-6500R (DN 250)
- AMV(E)-10KR (DN 300).

Особенности

• Логарифмическая характеристика.

- Динамический диапазон регулирования: >50:1.
- Разгруженный по давлению (DN 125-300).

Основные характеристики

- Условный проход: DN = 15-300 мм.
- Пропускная способность: $K_{VS} = 0,63-990 \text{ м}^3/4.$
- Условное давление (PN): 16 бар.
- Регулируемая среда: вода или 50 % водный раствор гликоля.
- Температура регулируемой среды:

 25...130 °C (при температуре ниже 0 °C требуется подогреватель штока 065Z7020R);
 0...130 °C для DN 250-300.
- Присоединение к трубопроводу: фланцевое 16 бар по стандарту EN 1092-2

Номенклатура и коды для оформления заказа

Эскиз	DN, mm	K _{vs} , м³/ч	PN, бар	ΔP _{max} , 6ap ¹	Кодовый номер
	15	0,63			065Z0271R2
	15	1			065Z0272R2
	15	1,6			065Z0273R2
	15	2,5			065Z0274R2
	15	4		4	065Z0275R2
я	20	6,3			065Z0276R2
	25	10			065Z0277R2
	32	16			065Z0278R2
	40	25	16		065Z0279R2
	50	40	10	3	065Z0280R2
'a a a '	65	52			065Z0281R
	80	88		3,5	065Z0282R
	100	140			065B3205R
	125	200			065B3230R
	150	280		8	065B3255R
	200	410			065B3256R
	250	630		10	065B3257R
	300	990		8	065B3258R

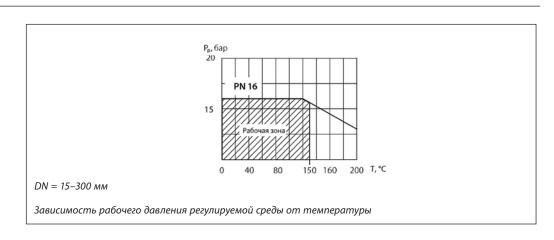
¹ ДР_{тах} — максимально допустимый перепад давления, преодолеваемый электроприводом при закрытии и работе клапана.

Клапан регулирующий седельный проходной VF-2R

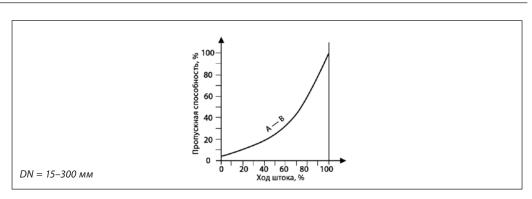
Номенклатура и коды для оформления заказа

Дополнительные принадлежности

Наименование	Кодовый номер
Подогреватель штока для клапанов Ридан DN15-200	065Z7020R


Запасные детали

Наименование	Кодовый номер
Уплотнение сальниковое Ридан VF-2R DN 15-80 –25+130 °C	065B2070R5
Уплотнение сальниковое Ридан VF-2R DN 100–300 –25+130 °C	065B2070R6


Технические характеристики

Условный проход DN, мм	15	20	25	32	40	50	65	80	100	125	150	200	250	300
Пропускная способность К _{vs} , м³/ч	0,63; 1; 1,6; 2,5; 4,0	6,3	10	16	21	40	52	88	140	200	280	410	630	990
Ход штока, мм		13			1	9	2	20			40			70
Динамический диапазон регулирования		>50:1												
Характеристика регурирования						Логар	оифмич	еская						
Коэффициент начала кавитации Z			0,5				0,45	0,4		0,35		0,25	0,21	0,2
Протечка через закрытый клапан, % от K _{vs}	0,01													
Условное давление PN, бар							16							
Рабочая среда				В	ода или	50 % в	одный	раствор	гликол	1Я				
Температура регулируемой среды T, °C					-	-25130)						0	130
Присоединение				Флан	цевое, I	PN = 16	бар по	станда	эту EN 1	092-2				
Материалы														
Корпус клапана и крышка			Выс	сокопро	очный ч	угун с і	шарови	дным г	рафито	м QT450)-10			
Седло, золотник и шток	·	Нержавеющая сталь												
Уплотнение сальника						Р	ΓFE, EPC	M						

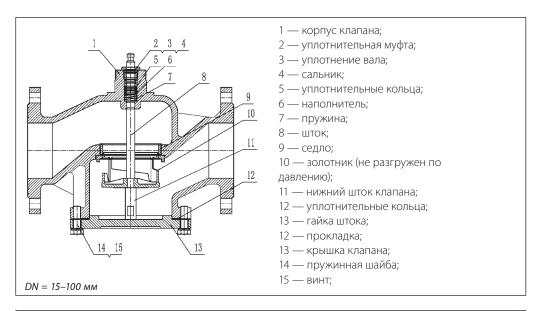
Условия применения

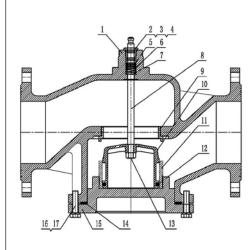
Характеристики регулирования

Монтаж

При монтаже клапана необходимо убедиться, чтобы направление движения регулируемой среды совпадало с направлением стрелки на его корпусе.

Перед монтажом клапана трубопроводная система должна быть промыта, соединительные элементы трубопровода и клапана размещены на одной оси, клапан защищен от напряжений со стороны трубопровода.


Клапан может быть установлен в любом положении, кроме положения электроприводом вниз.

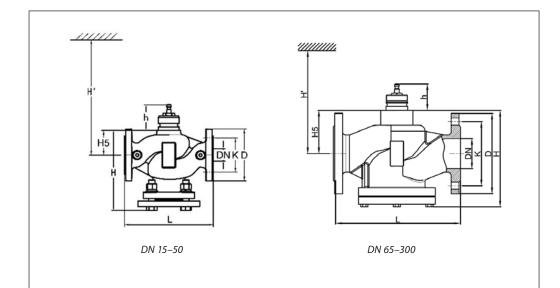

Необходимо предусмотреть достаточное пространство вокруг клапана с электроприводом для их демонтажа и обслуживания.

Электропривод может быть повернут вокруг своей оси в удобное для обслуживания положение, для чего следует ослабить крепление привода на клапане.

Клапаны DN 15-50 имеют фланцы квадратной формы. Для монтажа клапана на трубопровод применяются стандартные прокладки и ответные фланцы круглой формы.

Устройство клапана

- 1 корпус клапана;
- 2 уплотнительная муфта;
- 3 уплотнение вала;
- 4 сальник;
- 5 уплотнительные кольца;
- 6 наполнитель;
- 7 пружина;
- 8 шток;
- 9 седло;
- 10 золотник (разгружен по давлению);
- 11 втулка клапана;
- 12 уплотнительные кольца;
- 13 гайка штока;
- 14 прокладка;
- 15 крышка клапана;
- 16 пружинная шайба;
- 17 винт;


Утилизация

Перед утилизацией клапаны должны быть разобраны, а детали рассортированы по группам материалов.

DN = 125-300 MM

Габаритные и присоединительные размеры

					P	азмеры, г	MΜ					
							Н	,				
DN	L	D	К	Н	H5	ARV(E) -1000R/ ARV(E) -1000R SU/SD	AMV(E) -1800R -3000R -3000R SU/SD	AMV(E) -2000R SU/SD	AMV(E) -6500R -10KR	h	Кол-во отв.	Масса, кг
15	130	95	65	128	39	393	_	_	_	66	4-M12	5,47
20	160	105	75	143	42	396	_	_	_	66	4-M12	5,95
25	160	115	85	152,5	46,5	400	_	_	_	66	4-M12	6,5
32	180	140	100	178,5	56,5	410	_	_	_	66	4-M16	8,5
40	200	150	110	194	62	416	_	_	_	66	4-M16	9,5
50	230	165	125	212	63	417	_	_	_	66	4-M16	13,5
65	290	185	145	206	77	_	547	497	_	66	4-M16	15
80	310	200	160	209	76	_	547	497	_	66	8-M16	19,5
100	350	220	180	247	99	_	569	_	_	66	8-M16	25
125	400	250	210	293	119	_	589	_	_	66	8-M16	39,5
150	480	285	240	323	133	_	603	_	_	66	8-M20	52,5
200	495	340	295	386	145		615			66	12-M20	81,5
250	622	405	355	536	248	_	_	_	981	100	12-M24	152
300	698	460	410	593	280	_	_	_	1013	100	12-M24	205

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», поготип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Клапаны регулирующие седельные VZL-2R/3R/4R для местных вентиляционных установок

Описание и область применения

Клапаны регулирующие серии VZL предназначены для управления подачей тепло- и холодоносителя в установках вентиляции и кондиционирования воздуха для регулирования температуры.

Могут работать в сочетании с электрическими приводами AME 110 NLXR и TWA-QR.

Основные характеристики

- Условный проход: DN = 15-25 мм.
- Пропускная способность:
 K_{vs} = 1,7–4,5 м³/ч.

- Условное давление: PN = 16 бар.
- Температура регулируемой среды (воды или 50 % водного раствора гликоля): T = 2–110 °C.
- Уменьшенная пропускная способность порта В (у клапанов VZL-3R и VZL-4R).
- Мягкое уплотнение затвора обеспечивает его герметичность.
- Клапаны снабжены рукояткой для ручного управления.
- Присоединение к трубопроводу: резьбовое с помощью фитингов.

Номенклатура и коды для оформления заказа

Клапан VZL-2R

Эскиз	DN	К _{vs} , м ³ /ч	Макс. ΔР _{кл.} , бар	Кодовый номер
	15	1,7	2,5	065Z2074R
	20	2,8	1,5	065Z2075R
	25	4,5	0,7	065Z2076R

Клапан VZL-3R

Эскиз	DN	K _{vs} (A-AB), м ³ /ч	K _{vs} (В-АВ), м ³ /ч	Макс. ∆Р _{кл.} , бар	Кодовый номер
	15	1,7	1,3	2,5	065Z2084R
	20	2,8	1,8	1,0	065Z2085R
	25	4,5	3,1	0,7	065Z2086R

Клапаны регулирующие седельные VZL-2R/3R/4R для местных вентиляционных установок

Номенклатура и коды для оформления заказа (продолжение)

Клапан VZL4

Эскиз	DN	K _{vs} (A-AB), м ³ /ч	K _{vs} (B-AB), м ³ /ч	Макс. ∆Р _{кл} , бар	Кодовый номер
	15	1,7	1,3	2,5	065Z2094R
	20	2,8	1,8	1,5	065Z2095R

Примечание. K_{vs} — расход воды в $м^3/ч$ при температуре от 5 до 40 °C, которая проходит через полностью открытый клапан при перепаде давлений на нем 1 бар.

Макс. $\Delta P_{\text{кл.}}$ — предельный перепад давлений, который может преодолеть привод клапана.

Рекомендованное значение $\Delta P_{\text{кл.}}$, указанное в скобках, гарантирует отсутствие шума и износа уплотнителя. Потеря давления в клапане при проектном расходе воды может быть рассчитана по формуле:

$$\Delta P_{\text{KJL}} = \left(\frac{G}{K_{\text{VS}}}\right)^2$$
,

где G — расход, м 3 /ч; $_{\rm KR}$ — перепад давлений на полностью открытом клапане, бар;

 K_{vs} — пропускная способность клапана, м 3 /ч.

Дополнительне принадлежности (термоэлектрические и электрические приводы)

Тип привода	Питающее напряжение, В (пост. или пер. тока)	Вариант привода (NO— нормально открытый, NC— нормально закрытый)	Кодовый номер
	230 пер.	NC	082F1600R
TWA OR	24 пост.	NC	082F1602R
TWA-QR	230 пер.	NO	082F1601R
	24 пост.	NO	082F1603R
AME 110	24 пост./пер.	0,5(2)–10 B; 2(4)–20 мА DC; 3-точечный	082H8060R

Технические характеристики

Регулируемая среда	Вода или 50 % водный раствор гликоля				
Протечка через закрытый клапан, % от K _{vs}	Не более 0,02				
Температура регулируемой среды T, °C	2–110				
Условное давление PN, бар	16				
Ход штока, мм	3,5				
Присоединение	Наружная резьба				
Материал					
Корпус, седло и золотник клапана	Латунь CW617				
Шток	Нержавеющая сталь				
Сальниковое уплотнение	EPDM				

Утилизация

Перед утилизацией клапаны должны быть разобраны и рассортированы по группам материалов.

Монтаж

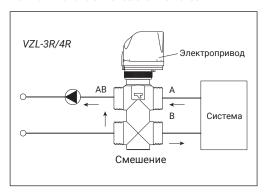
Перед установкой клапана необходимо убедиться в чистоте труб. Также важно, чтобы трубы находились на одной оси с клапаном.

При монтаже стрелка на корпусе клапана должна соответствовать типу монтажа — смешение или разделение потоков.

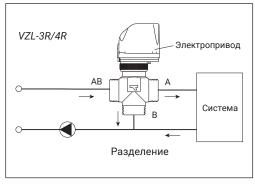
Клапан должен быть защищен от напряжений изгиба и осевых усилий со стороны трубопроводов.

Максимальный момент затяжки накидных гаек патрубков должен составлять не более 25–30 Нм.

Привод следует устанавливать на клапане сбоку или сверху.


странство для демонтажа привода, его текущего ремонта или замены.

Следует предусмотреть достаточное про-


Клапан нельзя устанавливать во взрывоопасных помещениях, а также в помещениях с температурой свыше 50 или ниже 2 °С. Его также нельзя подвергать воздействию открытого пара, сильных струй воды или капающих жидкостей.

Электропривод может быть повернут вокруг оси штока клапана в любое удобное для обслуживания положение (на 360°), после чего зафиксирован соединительной гайкой.

Монтаж клапана для смешения потоков

Монтаж клапана для разделения потоков

Выбор типоразмера клапана

Пример

Исходные данные

Расход: $G = 0.6 \text{ м}^3/\text{ч}$.

Перепад давления в системе: 0,3 бар.

Решение

Перепад давления на клапане выбирается таким образом, чтобы его авторитет по отношению к суммарной потере давления на системе и клапане был в диапазоне от 0,3 до 0,7 (предпочтительно 0,4). Важно, чтобы перепад давления на клапане не превышал ΔP_{max} — максимально допустимого перепада давления, преодолеваемого электроприводом. Авторитет клапана выражается уравнением:

$$a = \frac{\Delta P_1}{\Delta P_1 + \Delta P_2}$$

где ΔP_1 — перепад давления на полностью открытом клапане;

 ΔP_2 — перепад давления во всем остальном регулируемом участке.

Возьмем $\Delta P_{\kappa n} = 0,2$ бар. Рассчитаем требуемую пропускную способность клапана по формуле:

$$K_V=1,\!2 imes rac{G_p}{\sqrt{\Delta P_{\kappa_I}}}$$

где:

1,2 — коэффициент запаса;

 G_p — расчетный расход теплоносителя через клапан, м 3 /ч;

 $\Delta P_{\kappa \pi}$ — заданный перепад давления на клапане, бар.

$$K_V = 1.2 \times 0.6 / \sqrt{0.2} = 1.61 \text{ m}^3/\text{ч}.$$

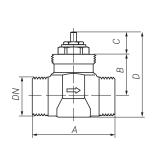
Выбираем клапан VZL-2R DN15 K_{vs} 1,7 PN16 K_{vs} = 1,7 m^3/v .

Потеря давления в полностью открытом клапане составляет:

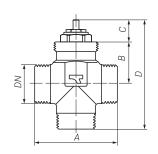
$$\Delta P_{{\scriptscriptstyle
m KI}.\phi a {\scriptscriptstyle
m KM}} = \left(rac{G}{K_{VS}}
ight)^2 = \left(rac{0.6}{1.7}
ight)^2 = 0.12$$
 бар .

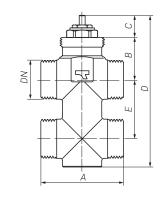
Авторитет выбранного клапана равен:

$$a = 0.12/(0.12+0.18) = 0.4.$$


a>0,3 — условие выполняется.

Итог


Выбираем код 065Z2074R Клапан VZL-2R DN15 K_{vs} 1,7 PN16 T110 CW617, резьбовой.


Габаритные и присоединительные размеры

DN	Кодовый номер	Α	В	С	D
15	065Z2074R	52	29		51
20	065Z2075R	56	28	13,5	56
25	065Z2076R	82	38		70

DN	Кодовый номер	Α	В	С	D
15	065Z2084R	52	29		68,5
20	065Z2085R	56	28	13,5	69,5
25	065Z2086R	82	38		92,5

DN	Кодовый номер	Α	В	С	D	E
15	065Z2094R	52	29	12 5	95,5	35
20	065Z2095R	56	28	13,5	112,5	40

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Клапаны регулирующие поворотные и двухпозиционные

Клапан регулирующий поворотный HRB-3R

Описание и область применения

Клапан регулирующий поворотный серии HRB-3R предназначен для применения в системах теплоснабжения, где допускается некоторая протечка теплоносителя через закрытый клапан и нет необходимости в обеспечении точных характеристик регулирования.

Клапан HRB-3R можно использовать совместно с редукторным электрическим приводом AMB-162R аналогового или 3-позиционного типа.

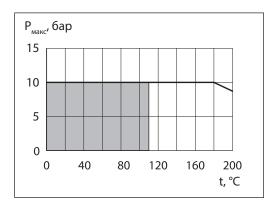
Особенности

- Низкая протечка через клапан.
- Эргономичная рукоятка.
- Простой монтаж.
- Применяется для смешения и разделения потоков.
- Соединение с трубопроводом: резьбовое (внутренняя резьба).

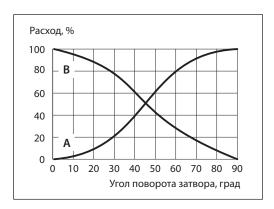
Основные характеристики

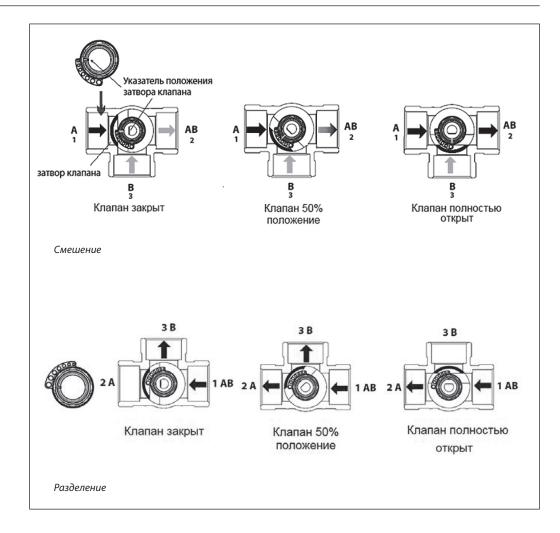
- Условный проход DN = 15-50 мм.
- Пропускная способность $K_{vs} = 0,4-40 \text{ м}^3/4$.
- Условное давление: PN = 10 бар.
- $T_{Makc} = 110$ °C.
- Характеристика регулирования: S-образная.

Номенклатура и коды для оформления заказа


DN	K _{vs} , м³/ч	PN, бар	Присоединительная резьба, дюймы	Кодовый номер	
	0,4			065Z0399R	
	0,63			065Z0400R	
15	1,0	10	Rp ⅓	065Z0401R	
	1,6			065Z0402R	
	2,5			065Z0403R	
20	4,0		Rp ¾	065Z0404R	
20	6,3		η ρ 7/4	065Z0405R	
25	10		Rp 1	065Z0407R	
32	16		Rp 1¼	065Z0408R	
40	25		Rp 1½	065Z0409R	
50	40		Rp 2	065Z0410R	

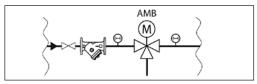
Технические характеристики


Условный проход DN, мм	15	20	25	32	40	50		
Характеристика регулирования		S-образная						
Протечка через закрытый клапан		Не более 1 % от Kvs						
Условное давление PN, бар		10						
Максимальный перепад давления для закрытия клапана, бар		2 — при разделении потоков; 1 — при смешении потоков						
Крутящий момент при PN, Нм		5						
Температура регулируемой среды T, °C		2–110						
Регулируемая среда		Вода или водный раствор гликоля с концентрацией до 50 %						
Показатель кислотности регулируемой среды рН		7–10						
Соединения с трубопроводом		Резьбовое (внутренняя резьба ISO 7/1)						
Материалы	*							
Корпус и затвор		Латунь EN 12165 CW617N						
Рукоятка		Нейлон						
Кольцевое уплотнение шпинделя		EPDM						


Диаграмма зависимости давления от температуры

Установка гидравлической системы

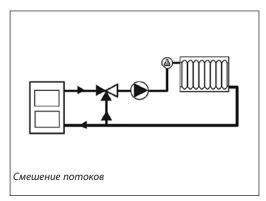
Установка

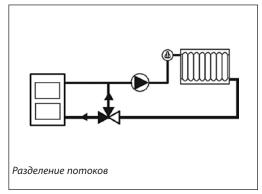


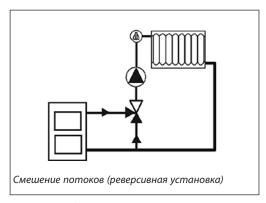
Клапан регулирующий поворотный HRB-3R

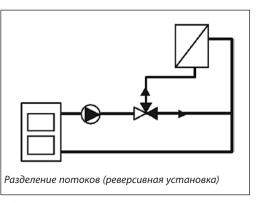
Монтаж клапана

Перед монтажом клапана трубопроводная система должна быть промыта. Клапан следует защищать от напряжений изгиба со стороны трубопровода. Для этого рекомендуется устанавливать компенсаторы в местах механических нагрузок, чтобы избежать повреждения управляющих элементов.

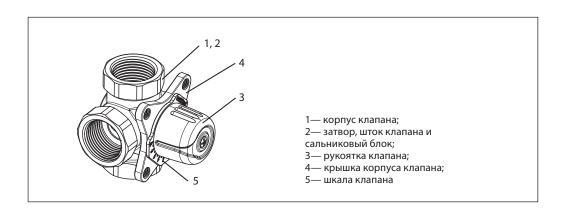

Примечание: Установить сетчатый фильтр перед клапаном.

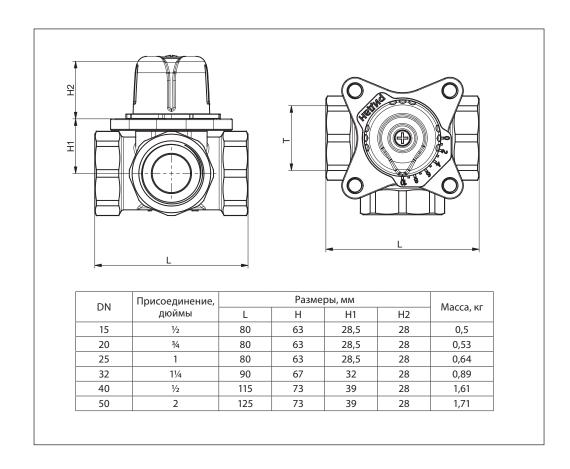



Применение.


HRB-3R может использоваться как для смешения, так и для разделения потоков, если допустима некоторая протечка через закрытый клапан.

Примеры применения




При необходимости реверсирования потоков требуется изменить направление вращения электропривода и положение шкалы индикатора

Устройство

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Клапан регулирующий поворотный HFE-3R

Описание и область применения

Клапаны регулирующие поворотные серии HFE-3R предназначены для применения в системах теплоснабжения, где допускается некоторая протечка теплоносителя через закрытый клапан и нет необходимости в обеспечении точных характеристик регулирования.

Клапаны HFE-3R можно использовать совместно с редукторным электрическим приводом AMB-162R и AMB-182R.

Особенности

- Чугунный корпус.
- Самая низкая протечка в своем классе.
- Индикатор положения регулирующего затвора.
- Эргономичная рукоятка.
- Применяется для смешения и разделения потоков.
- Фланцевое соединение.

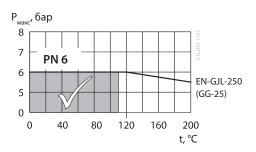
Основные характеристики

- Условный проход: DN = 20–150 мм.
- Пропускная способность: $K_{vs} = 12-400 \text{ м}^3/\text{ч}$.
- Условное давление: PN = 6 бар.
- T_{Makc.} = 110 °C.
- Трехходовой.
- Характеристика регулирования: S-образная.
- Область применения: для смешения и разделения потоков.
- Фланцевое соединение.

Номенклатура и коды для оформления заказа

Изображение	DN	K _{vs} , м ³ /ч	PN, бар	Кодовый номер
	20	12		065Z0428R
	25	18		065Z0429R
	32	28		065Z0430R
	40	44		065Z0431R
HFE-3R	50	60	6	065Z0432R
IIIE-SK	65	90	0	065Z0433R
	80	150		065Z0434R
	100	225		065Z0435R
	125	280		065Z0436R
	150	400		065Z0437R

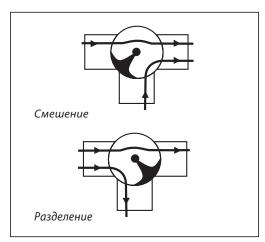
Запасные части


Тип	DN	Код
	20–25	065Z0454R
	32-40	065Z0455R
Сальниковый блок	50-65	065Z0456R
Сальниковый олок	80	065Z0457R
	100–125	065Z0458R
	150	065Z0459R

Технические характеристики

Условный проход DN, мм	20	25	32	40	50	65	80	100	125	150
Пропускная способность K _{vs} , м ³ /ч	12	18	28	44	60	90	150	225	280	400
Характеристика регулирования					Ѕ-обр	азная				
Протечка через закрытый клапан				разделе и смеше						
Условное давление, бар		6								
Регулируемая среда	Вода или водный раствор гликоля с концентрацией до 50 %									
Показатель кислотности регулируемой среды, рН	7–10									
Температура регулируемой среды T, °C					2—	-110				
Соединения с трубопроводом				(Р ланце	вое, PN	6			
Материал										
Корпус и регулирующая заслонка			(Серый ч	угун EN	I-GJL-25	0 (GG25	5)		
Регулирующая заслонка	Латунная отливка CuZn36Pb2As+(BrassDZR, CW602N) DN20–65 Нержавеющая сталь DN80–150					65				
Кольцевое уплотнение шпинделя	EPDM									

Диаграмма зависимости давления от температуры


Установка

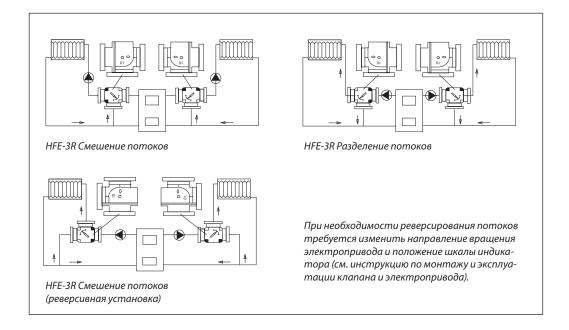
Монтаж клапана

Перед монтажом клапана трубопроводная система должна быть промыта. Клапан следует защищать от напряжений изгиба со стороны трубопровода. Для этого рекомендуется устанавливать компенсаторы в местах механических нагрузок, чтобы избежать повреждения управляющих элементов.

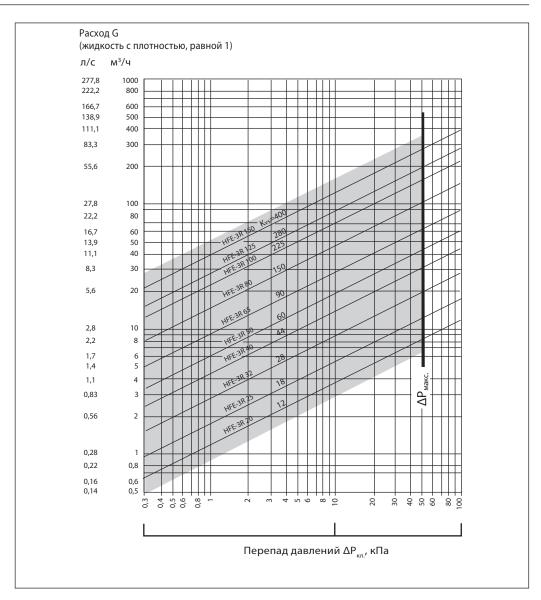
Примечание.

. Установить сетчатый фильтр перед клапаном.

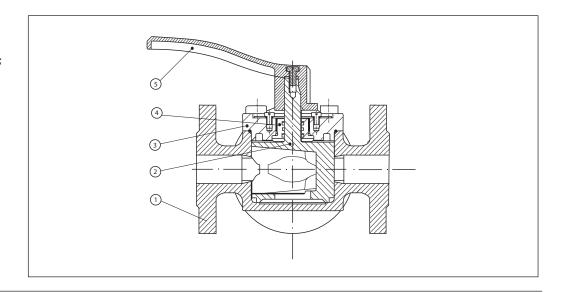
Применение

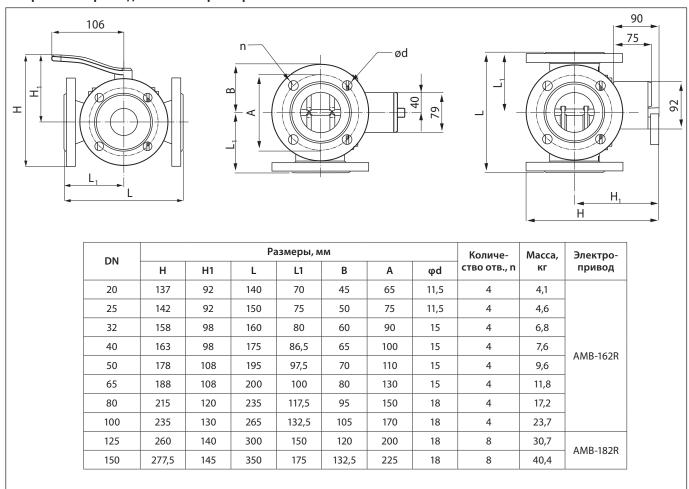

HFE-3R может использоваться как для смешения, так и для разделения потоков, если допустима некоторая протечка через закрытый клапан.

Утилизация


Перед утилизацией клапаны должны быть разобраны, а детали рассортированы по материалам.

Примеры применения


Номограммы для выбора клапанов



Устройство

- 1 корпус клапана;
- 2 регулирующий затвор;
- 3 крышка клапана;
- 4 сальник;
- 5 рукоятка.

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Клапаны двухпозиционные шаровые AMZ-112R — проходной, AMZ-113R — трехходовой

Описание и область применения

Двухпозиционные клапаны AMZ-112R и AMZ-113R могут использоваться совместно с электрическими поворотными приводами Ридан AMB-162R:

- в системах отопления;
- в системах горячего водоснабжения;
- в системах солнечного теплоснабжения;
- при приоритетном управлении системами отопления или ГВС (в качестве переключающего клапана);
- при приоритетном управлении котлами, работающими на разных видах топлива (в качестве переключающего клапана).

Основные характеристики

- Номинальный диаметр DN 15-50 мм.
- Номинальное давление PN 40 бар (25 бар для DN 40–50).
- Пропускная способность $K_{vs} = 20-243 \text{ м}^3/\text{ч}.$
- Температура рабочей среды -10...110 °C.
- Кран AMZ-113R имеет L-образную форму прохода

Номенклатура и коды для оформления заказа

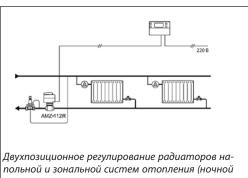
AMZ-112R двухходовой клапан

DN	К _{vs} , м³/ч	Присоединительная резьба, дюймы	Кодовый номер
15	20,0	Rp ½	082G5406 R
20	45,0	Rp ¾	082G5407 R
25	60,0	Rp 1	082G5408R
32	100,0	Rp 11/4	082G5409R
40	156,0	Rp 11/2	082G5410 R
50	243,0	Rp 2	082G5411 R

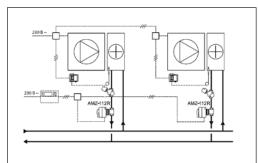
AMZ-113R трехходовой клапан

DN	К _{vs} , м³/ч	Присоединительная резьба, дюймы	Кодовый номер
20	45	Rp ¾	082G5419 R
25	60	Rp 1	082G5420 R

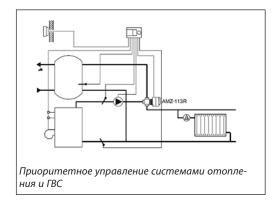
Внимание!

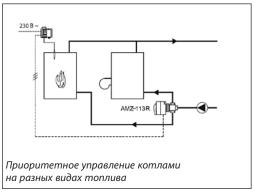

При установке привода AMB-162R с 2-позиционным управлением на шаровой кран AMZ-112R/AMZ-113R отдельный монтажный комплект не требуется, он поставляется в комплекте с приводом.

При установке привода AMB-162R с 3-позиционным или аналоговым управлением на шаровой кран AMZ-112R/AMZ-113R необходим монтажный комплект, соответствующий диаметру клапана.

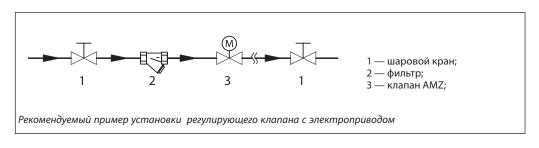

Технические характеристики

			1		
15	20	25	32	40	50
40 25				5	
20,0	45,0	60,0	100,0	156,0	243,0
		2	.110		
		-40	70		
Вода или водный раствор гликолей с концентрацией до 50 %					
аксимальный перепад давлений для закрытия папана, бар					
Внутренняя резьба Rp ISO 7/1					
7–10					
Латунь марки CW617N по EN12165					
Латунь марки CW617N по EN12165					
EPDM-PTFE					
	20,0	Вода или с ко	40 20,0 45,0 60,0 240 Вода или водный с концентра Внутренняя ре 7- Латунь марки CV	40 20,0 45,0 60,0 100,0 2110 -4070 Вода или водный раствор с концентрацией до 5 6 Внутренняя резьба Rp I 7–10 Латунь марки CW617N по	40 2 20,0 45,0 60,0 100,0 156,0 2110 -4070 Вода или водный раствор гликолей с концентрацией до 50 % 6 Внутренняя резьба Rp ISO 7/1 7–10 Латунь марки CW617N по EN12165 Латунь марки CW617N по EN12165

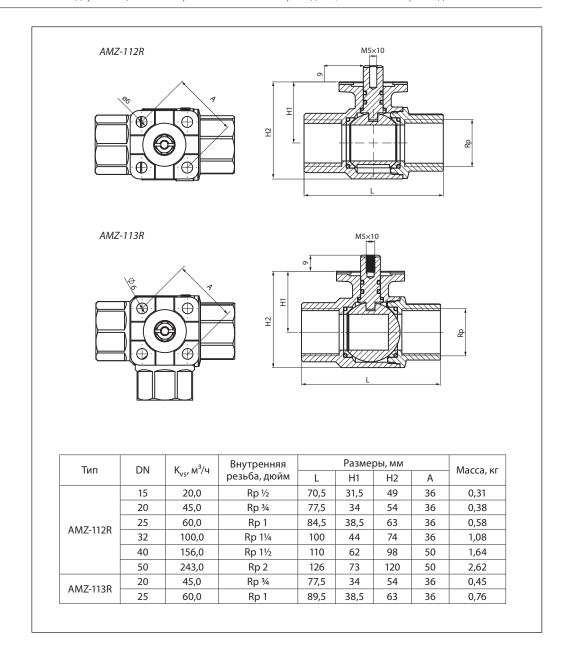

Примеры применения



режим)



Двухпозиционное управление воздухонагревателями или воздухоохладителями



Установка гидравлической системы

Габаритные и присоединительные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», поготип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Редукторные электроприводы с трехпозиционным и аналоговым управлением

Таблица совместимости регулирующих клапанов и электроприводов

								Элект	оические п	риводы		
	Технические характеристики						ARV(E)- 1000R	ARE-1000 VFM-R	AMV(E)- 2000R SU/SD	AMV(E)- 1800R	AMV(E)- 3000R SU/SD	AMV(E) 3000R
Напр	яжение п	итания 24 В пер. т	тока			√	√	√	√	√	√	√
Напр	яжение п	итания 220 В пер	. тока			√	ARV	√	√	√	√	√
Іита	тание переменным/постоянным током				√	-	√	√	-	√	-	
рехг	рехпозиционный управляющий сигнал					√	ARV	-	√	AMV	AMV	AMV
нал	налоговый управляющий сигнал					ARE	ARE	ARE	AME	AME	AME	AME
ащи	тная функ	ция («возвратная	пружи	іна»)		√	-	-	√	-	√	-
рем	я переме	щения штока на 1	1 мм, с			2/6	3,9	5/12,4	2/6	3,1	1,2/3	4,7
силі	ие, Н					1000	1000	1000	2000	1800	3000	3000
PN, Sap	Тип клапа- на	Т среды, °С	DN	Ход штока, мм	Пропускная способность К _{vs} , м ³ /ч	Ma		допустимый олеваемый з) кл. <i>і</i>
25	Tiu Tiu	2150 °С вода или 30 % раствор гликоля	15–50	5–10	0,25-40	16 ¹⁾	16 ¹⁾	16				
	–5…150 °C во		65-80	20	55–100					8		
	VEM 2D	или 50 % рас- твор гликоля ²⁾	100- 200	40	160-450						8	8
	VFM-2R		250	40	630							
	þ	0130 °C вода или 50 %	300	70	990							
		раствор гликоля	350	70	1300							
			400	70	1960	4 (5)	10)					
		–25…150 °С вода г или 50 % рас- твор гликоля ²⁾	15–50	13–19	0,63-40		115–40) NS0)		4./5	ALCE)		
			65-80	20	52–88					N65) DN80)	2.F. (DN100)	2.5 (DN11)
	VF-2R		100- 200	40	140-410						3,5 (DN100) 8 (DN125–200)	3,5 (DN10 8 (DN125–
16		0130 °С вода или 50 %	250	40	630							
		раствор гликоля 1220 °C	300	70	990				0.2)			
	VFS-2R	вода/50 % раствор	15-80	13–20	0,63–100 160–450				83)	8	8	8
		гликоля/пар	200 15–50	13–19	0,63-40	4/1	4/1					
			65	20	55				4	4		
		−5150 °С вода	80	20	100				3,5	3,5		
		или 50 % рас- твор гликоля ²⁾	100	40	160						3,5	3,5
		. BOP MINOM	125 150	40	250 320						1,2	1,2
	VF-3R		200	40	450						1,∠	1,∠
			250	40	630							
		0150 °C	300	70	990							
		вода или 50 % раствор гликоля	350	70	1300							
			400	70	1960							
25	VRB-2R	−25…130 °С вода или 50 % рас-	15–50	13–19	0,63–30							

¹ Для монтажа электропривода на клапан необходимо использовать соответствующий адаптер (заказывается и поставляется отдельно) — 065Z0311R. Установка аналоговых приводов ARE-1000R SU/SD и ARE-1000R на клапан VFM-2R доступна только для диаметров DN 32-50.

2 Для температур среды ниже 2 °C необходимо применять подогреватель штока (заказывается и поставляется отдельно) — 065Z7020R.

3 Привод AME-2000R SU/SD только для VFM-2R, VF-2R DN65–80, VFS-2R и VF-3R DN65–80.

твор гликоля²⁾

VRB-3R

						Электрические приводы					
		Технические ха	ракте	ристики	1	AMV(E)- 6500R	AMV(E)-10KR	AMV(E)- 26KSR	AMV(E)-1000R		
Напр	яжение п	 итания 24 В пер. 1	гока			-	-	-	√		
Напр	яжение п	итания 220 В пер.	. тока			√	√	√	AMV		
Пита	Іитание переменным/постоянным током						-	-	-		
Трехг	рехпозиционный управляющий сигнал						AMV	AMV	AMV		
Анал	Аналоговый управляющий сигнал						AME	AME	AME		
Защи	тная функ	ция («возвратная	пружи	ıна»)		-	-	-	-		
Время перемещения штока на 1 мм, с						2,1	2,1	1	3,9		
Усили	1e, H					6500	10000	26000	1000		
PN, бар	Тип клапа- на	Т среды, °С	DN	Ход штока, мм	Пропускная способность К _{vs} , м ³ /ч	Максимал клапане Д	ьно допустимы ∆Р _{кл.} , преодолеі приводо	ваемый эл	давления на ектрическим		
25		2150 °С вода или 30 % раствор гликоля	15–50	5–10	0,25–40						
		–5150 °С вода или 50 % рас- твор гликоля ¹⁾	65-80	20	55–100						
	VEM 2D		100- 200	40	160-450						
	VFM-2R		250	40	630	10					
		0130 °С вода или 50 %	300	70	990		8				
		раствор гликоля	350	70	1300		7				
			400	70	1960		6				
		–25…150 °С вода или 50 % рас- твор гликоля ¹⁾	15–50	13–19	0,63-40						
			65–80	20	52–88						
	VF-2R		100- 200	40	140-410						
16		0130 °С вода или 50 %	250	40	630	10					
10		раствор гликоля	300	70	990		8				
		1220 °C вода/50 %	15-80	13–20	0,63–100						
	VFS-2R	раствор гликоля/пар	100- 200	40	160-450						
			15-50	13–19	0,63-40						
			65	20	55						
		−5…150 °С вода или 50 % рас-	80 100	20 40	100 160	4,5	5				
		твор гликоля ¹⁾	125	40	250	4	5				
			150	40	320	3,5	4				
	VF-3R		200	40	450	2,9	3,5				
			250	40	630	1,2	2,5				
		0150 °C	300	70	990		1,2				
		вода или 50 % раствор гликоля	350	70	1300			2,1			
			400	70	1960			1,5			
25	VRB-2R	−25…130 °С вода или 50 % рас-	15–50	13–19	0,63–30				5 (до DN32) 3,5 (DN40)		

 $^{^1}$ Для температур среды ниже 2 $^\circ$ С необходимо применять подогреватель штока (заказывается и поставляется отдельно) — 065Z7020R.

Таблица совместимости поворотных клапанов и электроприводов

							Элект	рические пр	оиводы			
	Техниче	ские харан	ктерист	ики	AMB-162R 082H0214R	AMB-162R 082H0215R	AMB-162R 082H0224R	AMB-162R 082H0225R	AMB-162R 082H0230R	AMB-182R 082H0236R	AMB-182R 082H0240R	AMB-182R 082H0241R
Напр	Напряжение питания 24 В пер. тока				√	√	-	-	-	-	-	-
Напр	яжение пита	ания 230 В п	ер. тока		-	-	$\sqrt{}$	$\sqrt{}$	-	-	√	-
Питан	ние 24 В пер	еменным/по	ннкотос	ым током	-	-	-	-	√	$\sqrt{}$	-	√
Трехг	103иционны	ный управляющий сигнал			√	√	√	√	-	$\sqrt{}$	√	-
Двухг	103ИЦИОННЫ	й управляю	щий сиг	нал	$\sqrt{}$	$\sqrt{}$	√	$\sqrt{}$	-	-	-	-
Анало	Аналоговый управляющий сигнал				-	-	-	-	√	-	-	
Врем	Время поворота на 90°, с				60	120	60	120	60 или 120	150	150	150
PN, бар	Клапан	Т среды, °С	DN	K _{vs} , м³/ч				Совмес	тимость			
10	HRB-3R	2-110	15-50	0,4-40	√	√	√	√	√	-	-	-
6	HFE-3R	2-110	20-100	12-225	√	√	√	√	√	-	-	-
6	HFE-3R	2-110	125- 150	280-400	-	-	-	-	-	√1)	√1)	√1)
40	AMZ-113R	2-110	20-25	45-60	√	√	√	√	-	-	-	-
40	AMZ-112R	2-110	15-32	20-100	√	√	√	√	-	-	-	-
25	AMZ-112R	2-110	40-50	156-243	√	√	√	√	-	-	-	-

 $^{^{1}}$ Требуется комплект для монтажа привода AMB-182R на клапаны HFE-3R DN125-150 082H0254R.

Таблица совместимости приводов Ридан с клапанами Данфосс

Клапан/Привод	ARV-1000R SU/SD	ARE-1000R SU/SD	ARV-1000R	ARE-1000R	ARE- 1000VFM-R	AMV- 1800R	AMV(E)- 3000R	AMB-162R	AMB-182R
VFM2/VB2 (DN15-25)	√ 065Z0311R	-	√065Z0311R	-	√065Z0311R	-	-	-	-
VFM2/VB2 (DN32-50)	√065Z0311R	√065Z0311R	√065Z0311R	-	√065Z0311R	-	-	-	-
VFM2 (DN65-150)	-	-	-	-	-	√065Z0312R	√065Z0312R	-	-
VRB2/VRB3 (DN15-50)	√065Z0313R	√065Z0313R	√065Z0313R	√065Z0313R	-	-	-	-	-
VRG2/VRG3 (DN15-50)	√ 065Z0313R	√ 065Z0313R	√065Z0313R	√065Z0313R	-	-	-	-	-
VL2/VL3 (DN15-50)	√ 065Z0313R	√ 065Z0313R	√065Z0313R	√065Z0313R	-	-	-	-	-
VF2/VF3 (DN15-50)	√065Z0313R	√ 065Z0313R	√065Z0313R	√065Z0313R	-	-	-	-	-
VF3 (DN100-150)	-	-	-	-	-	√065Z0312R	√065Z0312R	-	-
HRB3/HRB4	-	-	-	-	-	-	-	√065Z0314R	-
HRE3/HRE4	-	-	-	-	-	-	-	√065Z0314R	-
HFE3 (DN20-100)	-	-	-	-	-	-	-	√ без адаптера	-
HFE3 (DN125-150)	-	-	-	-	-	-	-	-	√ 082H0254R

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Редукторный электропривод Ридан ARV(E)-1000R SU/SD с функцией безопасности

Описание и область применения

Электроприводы ARV(E)-1000R SU/SD предназначены для управления регулирующими клапанами импульсным или аналоговым сигналом от электронных регуляторов Ридан ECL-3R/4R или подобных в системах центрального теплои холодоснабжения, отопления, вентиляции и кондиционирования воздуха.

Внимание! Мощность источника питания должна быть достаточной для привода.

Электроприводы используются для управления седельными проходными регулирующими

клапанами серий VFM- $2R^1$ (через адаптер), VF-3R, VF-2R (DN15–50).

Особенности

- Привод ARE-1000R SU/SD можно использовать в режиме трехпозиционного управления с аналоговой обратной связью.
- Функция безопасности привод опускает или поднимает шток при перебоях питания.
- Указатель положения.
- Перенастраиваемое время перемещения штока на 1 мм.
- Наличие функции автоподстройки под конечные положения штока клапана в аналоговом приводе.
- Наличие концевых выключателей в импульсном приводе.
- Питающие напряжение постоянное или переменное.

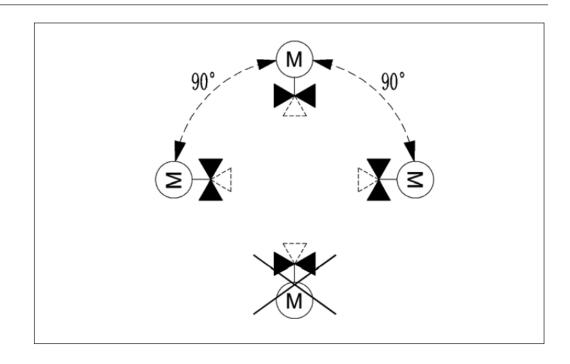
Основные характеристики

- Питающее напряжение (переменного или постоянного тока): 24 или 230 В.
- Входной сигнал регулирования: аналоговый или трехпозиционный импульсный.
- Развиваемое усилие: 1000 Н.
- Ход штока: 20 мм.
- Время перемещения штока на 1 мм: (перенастраиваемое) 2 или 6 с.
- Максимально допустимая температура теплоносителя: 150 °C.

Номенклатура и коды для оформления заказа

Тип	Питающее напряжение, В	Кодовый номер
1 7111	Питающее напряжение, в	кодовый номер
ARV-1000R SU/SD	220	082G3009 R
ARV-1000R SU/SD	24	082G3010R
ARE-1000R SU/SD	220	082G3011 R
ARE-1000R SU/SD	24	082G3012 R

¹ Установка аналоговых приводов ARE-1000R SU/SD и ARE-1000R на клапан VFM-2R доступна только для диаметров DN32–50.


Редукторный электропривод Ридан ARV(E)-1000R SU/SD с функцией безопасности

Технические характеристики

Модификация электропривода	Ридан ARV-1000R SU/SD	Ридан ARE-1000R SU/SD		
Питающее напряжение		. тока, от –10 до +10 % г. тока, от –10 до +10 %		
Потребляемая мощность, ВА		24		
Частота тока, Гц		50		
Принцип управления	Трехпозиционный	Аналоговый/трехпозиционный		
Входной управляющий сигнал	Импульсный	0(2) – 10 В, 0(4) – 20 мА/импульсный		
Выходной сигнал обратной связи	Дискретный, в крайних положениях	0(2) – 10 B, 0(4) – 20 mA		
Функция безопасности	Да, при перебое питания привод опускает или поднимает (в зависимости от выбранной настройки)			
Развиваемое усилие, Н		1000		
Максимальный ход штока, мм		20		
Время перемещения штока на 1 мм, с	2/6 (в зависим	ости от настройки)		
Настраиваемое время перемещения		Да		
Рабочая температура окружающей среды, °C	От	0 до 55		
Температура транспортировки и хранения, °C	От –40 до 70			
Класс защиты	IP5	54/IP67 ¹		
Масса, кг	2,15			

¹ Возможное исполнение под заказ

Монтажные положения

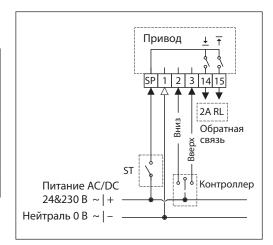


Схема электрических соединений

Ридан ARV-1000R SU/SD, AMV-2000R SU/SD

Рекомендуемое сечение жил кабеля 1,5 мм².

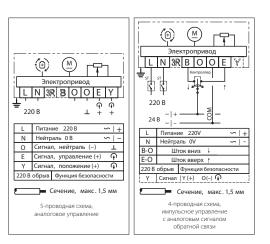
Клемма SP	Фаза питающего напряжения для функции безопасности
Клемма 1	Нейтраль, общий (0 В)
Клемма 2	Подача импульсного сигнала от регулятора — движение штока ВНИЗ
Клемма 3	Подача импульсного сигнала от регулятора — движение штока ВВЕРХ
Клемма 14	Выход, сигнал концевого выключателя, нижнее положение
Клемма 15	Выход, сигнал концевого выключателя, верхнее положение

Ридан ARE-1000R SU/SD

Внимание! Схема для питающего напряжения 24 В.

Рекомендуемое сечение жил кабеля 1,5 мм².

Клемма В	Фаза питающего напряжения 24 В или сигнал вниз
Клеммы О	Нейтраль общая, нейтраль сигнала управления (ОВ)
Клемма Е	Входной управляющий сигнал (0–10 или 2–10 В, или 4–20 мА) или сигнал вверх
Клемма Ү	Выходной сигнал обратной связи при любом типе управления
Клемма 3R	Фаза питающего напряжения для функции безопасности (при импульсном подключение)



Внимание! Схема для питающего напряжения 220 В.

Рекомендуемое сечение жил кабеля 1,5 мм².

Клемма L	Фаза питающего напряжения 220 В
Клемма N	Нейтраль питающего напряжения 220 В
Клемма В	Сигнал вниз (24 B VDC) ¹
Клемма О	Нейтраль сигнала управления (0 В)
Клемма Е	Входной управляющий сигнал (0–10 или 2–10 В, или 4–20 мА) или сигнал вверх (24 В VDC) ¹
Клемма Ү	Выходной сигнал обратной связи при любом типе управления

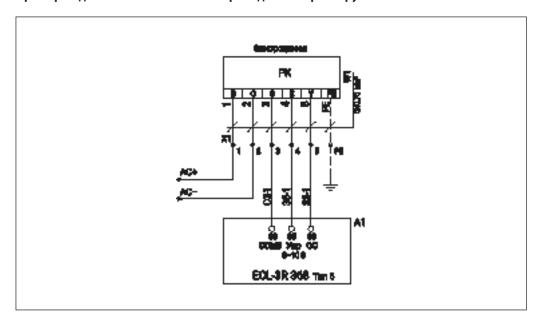

¹ В случае необходимости подключения импульсного управления 220 В, обратиться за информацией к техническому специалисту Ридан.

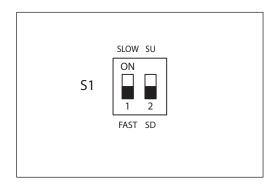
Схема электрических соединений (продолжение)

Пример подключения аналогового привода к контроллеру ECL-3R 368

Настройка DIP-переключателей

Ридан ARV-1000R SU/SD

Переключатель 1


Время перемещения штока на 1 мм.

- FAST 2 c/мм,
- SLOW 6 с/мм.

Переключатель 2

Действие привода при перебое питания.

- \bullet SU при перебое питания привод поднимает шток,
- \bullet SD при перебое питания привод опускает шток.

Ридан ARE-1000R SU/SD

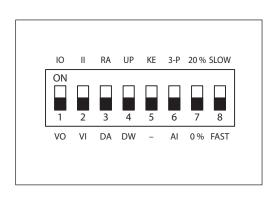
Переключатель 8

Время перемещения штока на 1 мм.

- FAST 2 c/мм,
- SLOW 6 с/мм.

Переключатель 4

Действие привода при перебое питания.


- \bullet UP при перебое питания привод поднимает шток,
- DW при перебое питания привод опускает шток.

Переключатель 5

Действие привода при отключении сигнала управления.

- КЕ привод опускает/поднимает шток, в зависимости от настройки переключателя 4,
- - привод сохраняет положение.

Прочие настройки указаны в руководстве по эксплуатации.

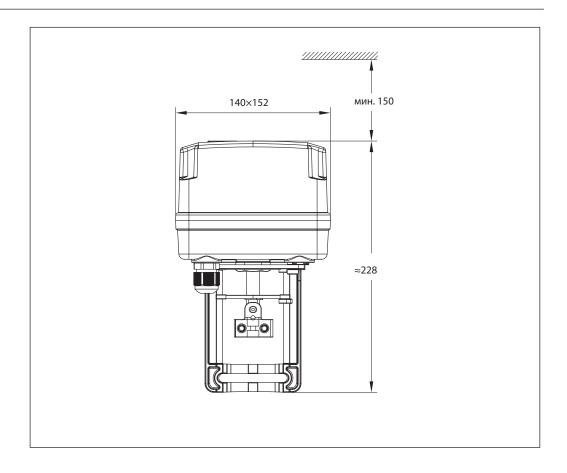
Редукторный электропривод Ридан ARV(E)-1000R SU/SD с функцией безопасности

Ручное позиционирование

Ручное позиционирование производится при отключенном напряжении. Вставьте шестигранный торцевой ключ в верхнюю часть привода. При вращении шестигранного ключа по часовой стрелке шток движется вниз, против

часовой стрелки — шток движется вверх. Проверьте правильность направления движения привода и установите в необходимом положении

Функция безопасности


Функция безопасности полностью открывает или полностью закрывает клапан при обесточивании системы в зависимости от выбранного типа действия.

Комбинации электроприводов и регулирующих клапанов

Электропривод Ридан ARV(E)-1000R SU/SD совместим со следующими регулирующими клапанами:

- VFM-2R (через адаптер) DN 15-50 мм¹;
- VF-3R DN 15-50 MM;
- VF-2R DN 15-50 MM.

Габаритные размеры

 $^{^1}$ Установка аналогового привода ARE-1000R SU/SD на клапан VFM-2R доступна только для диаметров DN 32–50.

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», поготип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Редукторные электроприводы Ридан ARV(E)-1000R, ARE-1000VFM-R

Описание и область применения

Электропривод предназначен для управления регулирующими клапанами DN15–50 VFM-2R¹⁾ (через адаптер), VF-3R и VF-2R. Управление приводом Ридан ARV-1000R осуществляется по импульсному сигналу от трехпозиционных

электронных регуляторов Ридан ECL-3R/4R или подобных. Приводы Ридан ARE-1000V и ARE-1000VFM-R управляются аналоговым сигналом.

Кроме стандартных функций, таких как ручное позиционирование и индикация положения, приводы имеют концевые моментные выключатели, которые защищают привод от перегрузок.

Основные характеристики

- Питающее напряжение: ARV-1000R – 24 или 220 В перем./пост. тока²⁾; ARE-1000R – 24 В перем./пост. тока³⁾; ARE-1000VFM-R – 24 или 220 В перем./пост. тока
- Скорость перемещения штока: ARV-1000R— 3,9 с на 1 мм, или настраиваемая скорость 1,2/3² с на 1 мм; ARE-1000VFM-R— настраиваемая скорость 5/12,4 с на 1 мм.

Внимание! Приводы серии ARE-1000VFM-R устанавливаются через адаптер и применяются только для клапанов VFM-2R DN15-50.

Номенклатура и коды для оформления заказа

Тип	Питающее напряжение, В	Кодовый номер
ARV-1000R	220	082G6011R
ARV-1000R	24	082G6012R
ARE-1000R	24	082G6017R
ARE-1000VFM-R	24	082G6018R
ARE-1000VFM-R	220	082G6019R

Дополнительные принадлежности

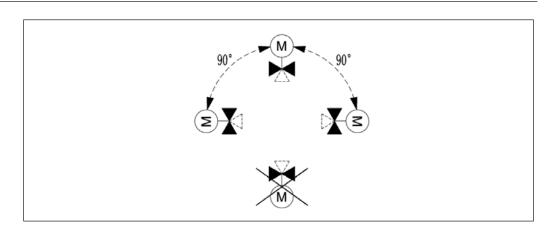
Наименование	Кодовый номер
Концевой выключатель (2 контакта) для ARV-1000R	08GH3201R ¹⁾

¹ Установка доступна только на приводах импульсного типа с датой производства начиная с 3 недели 2024 г (03/24).

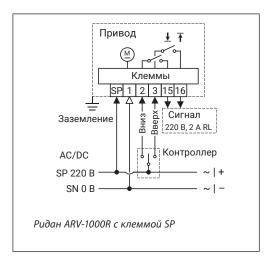
¹ Установка аналогового привода ARE-1000R на клапан VFM-2R доступна только для диаметров DN 32–50. ARE-1000VFM-R можно установить на любой клапан VFM-2R DN15–50.

² 24 или 220 В перем./пост. тока и настраиваемая скорость работы доступны на приводах импульсного типа с датой производства начиная с 49 недели 2023 г (49/23).

³ 24 В перем./пост. тока и настраиваемая скорость перемещения доступны на приводах аналогового типа с датой производства начиная с 15 недели 2025 г. (15/25).



Технические характеристики


Электропривод	Ридан ARV-1000R	Ридан ARE-1000R	ARE-1000VFM-R	
Питающее напряжение	24 В перем./пост. тока, от –10 до +10 % 220 В перем./пост. тока, от –10 до +10 % ¹⁾	24 В перем./ пост. тока, от –10 до +10 % ²⁾	24 В перем./пост. тока, от –10 до +10 % 220 В перем./пост. тока, от –10 до +10 %	
Потребляемая мощность, ВА	6,7		7,8	
Частота тока, Гц		50		
Принцип управления	Трехпозиционный	Аналоговый (грехпозиционный ³⁾)	
Входной управляющий сигнал	Импульсный		(2) – 10 B, 4) – 20 MA	
Выходной сигнал обратной связи	Дискретный, в крайних положениях	0(2) – 10 В, 0(4) – 20 мА		
Возвратная пружина	Нет			
Развиваемое усилие, Н	1000			
Максимальный ход штока, мм	22		12	
Время перемещения штока на 1 мм, с	1,2/3 3,9 или 1,2/32		5/12,4	
Максимальная температура теплоносителя, °C	150			
Рабочая температура окружающей среды, °C	От –10 до 50			
Температура транспортировки и хранения, °C	От -40 до 70			
Класс защиты	IP54			
Масса, кг	1,9			

¹ 24 или 220 В перем./пост. тока доступно на приводах импульсного типа с датой производства начиная с 49 недели 2023 г. (49/23).

Монтажные положения

Схема электрических соединений

Электрическая схема ARV-1000R 220 В с клеммой SP

Внимание!

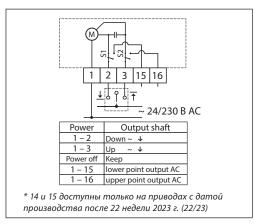
Клемма SP обязательна для подключения.

Клемма SP: фаза, 220 В. **Клемма 1:** нейтраль, 0 В.

Клемма 2: подача импульсного сигнала от регулятора — движение штока вниз.

Клемма 3: подача импульсного сигнала от регулятора — движение штока вверх.

Клемма 15: дискретный сигнал обратной связи при достижении приводом крайнего нижнего положения


Клемма 16: дискретный сигнал обратной связи при достижении приводом крайнего верхнего положения.

^{2 24} В перем./пост. тока и настраиваемая скорость перемещения доступны на приводах аналогового типа с датой производства начиная с 15 недели 2025 г. (15/25).

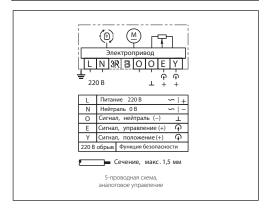

³ Функция доступна для приводов ARE-1000VFM-R. Со схемой подключения можно ознакомиться в руководстве по эксплуатации.

Схема электрических соединений (продолжение)

Ридан ARV-1000R

Рекомендуемое сечение жилы кабеля 1,5 мм².

Клемма 2: подача импульсного сигнала от регулятора — движение штока вниз.

Клемма 3: подача импульсного сигнала от регулятора — движение штока вверх.

Клеммы 15 и 16: сигнал обратной связи.

Ридан ARE-1000R и ARE-1000VFM-R 24 AC/DC

Внимание!

Для ARE-1000R питающее напряжение только 24 В пер. тока.

Рекомендуемое сечение жилы кабеля 1,5 мм².

В — фаза питающего напряжения (24 В пер. тока);

О — нейтраль, общий (0 В);

Е — входной управляющий сигнал (0–10 или

2-10 В, 0-20 или 4-20 мА);

Y — выходной управляющий сигнал (0–10 или 2–10 В, 0–20 или 4–20 мА).

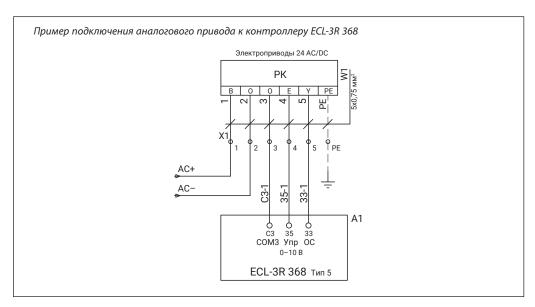
Внимание! Схема для питающего напряжения 220 В.

Рекомендуемое сечение жил кабеля 1,5 мм².

L — фаза питающего напряжения 220 В;

N — нейтраль питающего напряжения 220 В;

В — сигнал вниз (24 В VDC)¹⁾;


О — нейтраль сигнала управления (0 В);

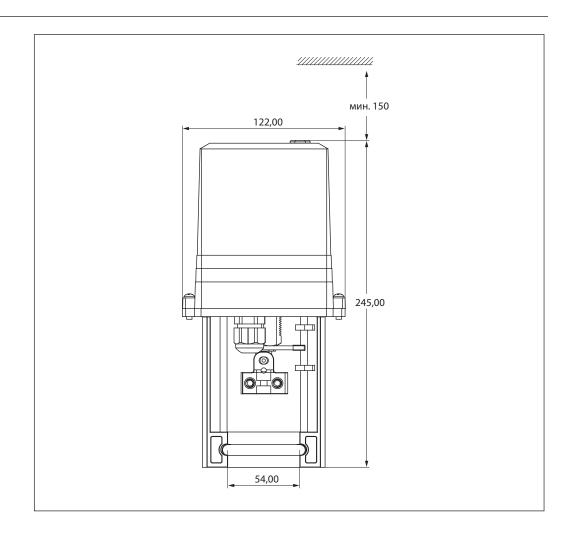
Е — входной управляющий сигнал (0–10 или

2–10 В, 0–20 или 4–20 мА) или сигнал вверх (24 В VDC)¹;

Y — сигнал обратной связи при любом типе управления.

В случае необходимости подключения импульсного управления 220 В обратитесь к техническому специалисту Ридан.

Ручное позиционирование


Ручное позиционирование производится при отключенном напряжении. Вставить шестигранный торцевой ключ в верхнюю часть привода и поворачивать в сторону. Проверить правильное направление движения привода и установить в необходимом положении.

Комбинации электроприводов и регулирующих клапанов

Электроприводы Ридан ARV(E)-1000R и ARE-1000VFM-R совместимы со следующими регулирующими клапанами:

- VFM-2R (через адаптер) DN 15-50 мм¹⁾;
- VF-3R DN 15-50 MM;
- VF-2R DN 15-50 MM.

Габаритные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

¹ Установка аналогового привода ARE-1000R на клапан VFM-2R доступна только для диаметров DN 32–50.

Редукторный электропривод Ридан AMV(E)-2000R SU/SD с функцией безопасности

Описание и область применения

Электроприводы AMV(E)-2000R SU/SD предназначены для управления регулирующими клапанами импульсным или аналоговым сигналом от электронных регуляторов Ридан ECL-3R/4R или подобных в системах центрального теплои холодоснабжения, отопления, вентиляции и кондиционирования воздуха.

Внимание! Мощность источника питания должна быть достаточной для привода.

Электроприводы используются для управления седельными проходными регулирующими клапанами серий VFM-2R (DN65–80), VF-2R (DN65–80), VF-3R (DN65–80), VF-2R (DN15–80)¹.

Особенности

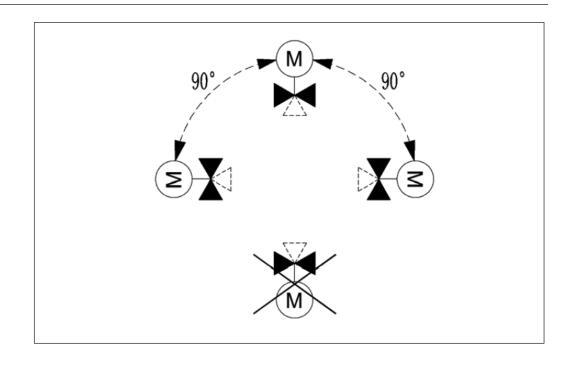
- Функция безопасности привод опускает или поднимает шток при перебоях питания.
- Указатель положения.
- Перенастраиваемое время перемещения штока на 1 мм.
- Наличие функции автоподстройки под конечные положения штока клапана в аналоговом приводе.
- Наличие концевых выключателей в импульсном приводе.
- Питающие напряжение постоянное или переменное
- Привод AME-2000R SU/SD можно использовать в режиме трехпозиционного управления с аналоговой обратной связью.

Основные характеристики

- Питающее напряжение (переменного или постоянного тока): 24 или 230 В.
- Входной сигнал регулирования: аналоговый или трехпозиционный импульсный.
- Развиваемое усилие: 2000 Н.
- Ход штока: 40 мм.
- Время перемещения штока на 1 мм: (перенастраиваемое) 2 или 6 с.
- Максимально допустимая температура теплоносителя: 150 °C.

Номенклатура и коды для оформления заказа

Тип	Питающее напряжение, В	Кодовый номер
AMV-2000R SU/SD	24	082G3448 R
AMV-2000R SU/SD	220	082G3449 R
AME-2000R SU/SD	24	082G3450 R
AME-2000R SU/SD	220	082G3451 R


¹ Установка привода AME-2000R SU/SD доступна только для VFM-2R, VF-2R DN65–80, VFS-2R и VF-3R DN40-80.

Технические характеристики

Модификация электропривода	Ридан AMV-2000R SU/SD	Ридан AME-2000R SU/SD	
Питающее напряжение	24 В перем./пост. тока, от –10 до +10 % 220 В перем./пост. тока, от –10 до +10 %		
Потребляемая мощность, ВА	24		
Частота тока, Гц		50	
Принцип управления	Трехпозиционный	Аналоговый/трехпозиционный	
Входной управляющий сигнал	Импульсный	0(2)–10 В, 0(4)–20 мА/импульсный	
Выходной сигнал обратной связи	Концевые выключатели	0(2)-10 В, 0(4)-20 мА	
Функция безопасности	Да, при перебое питания привод опускает или поднимает шток (в зависимости от выбранной настройки)		
Развиваемое усилие, Н	2000(3000¹)		
Максимальный ход штока, мм	40		
Время перемещения штока на 1 мм, с	2/6 (в зависимости от настройки)		
Настраиваемое время перемещения	Да		
Рабочая температура окружающей среды, °C	От 0 до 55		
Температура транспортировки и хранения, °C	От –40 до 70		
Класс защиты	IP54(IP67 ²)		
Масса, кг	_	2,35	

 $^{^{\}rm 1}$ Под заказ возможно исполнение привода с усилием 3000 H и ходом 50 мм. $^{\rm 2}$ Возможное исполнение под заказ.

Монтажные положения

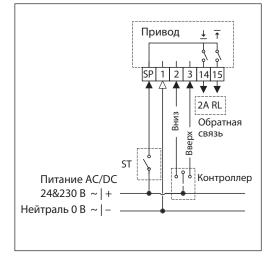
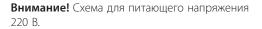


Схема электрических соединений

Ридан AMV-2000R SU/SD

Рекомендуемое сечение жил кабеля 1,5 мм².

Клемма SP	Фаза питающего напряжения для функции безопасности
Клемма 1	Нейтраль, общий (0 В)
Клемма 2	Подача импульсного сигнала от регулятора — движение штока ВНИЗ
Клемма 3	Подача импульсного сигнала от регулятора — движение штока ВВЕРХ
Клемма 14	Выход, сигнал концевого выключателя, нижнее положение
Клемма 15	Выход, сигнал концевого выключателя, верхнее положение

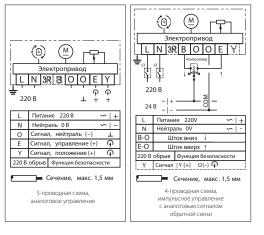


Ридан AME-2000R SU/SD

Внимание! Схема для питающего напряжения 24 В.

Рекомендуемое сечение жил кабеля 1,5 мм².

Клемма В	Фаза питающего напряжения 24 В или сигнал вниз
Клемма О	Нейтраль общая, нейтраль сигнала управления (0 B)
Клемма Е	Входной управляющий сигнал (0–10 или 2–10 В, или 4–20 мА) или сигнал вверх
Клемма Ү	Выходной сигнал обратной связи при любом типе управления
Клемма 3R	Фаза питающего напряжения для функции безопасности (при импульсном подключение)


Рекомендуемое сечение жил кабеля 1,5 мм².

Клемма L	Фаза питающего напряжения 220 B
Клемма N	Нейтраль питающего напряжения 220 В
Клемма В	Сигнал вниз (24 B VDC) ¹
Клемма О	Нейтраль сигнала управления (0 В)
Клемма Е	Входной управляющий сигнал (0–10 или 2–10 В, или 4–20 мА) или сигнал вверх (24 В VDC) ¹
Клемма Ү	Выходной сигнал обратной связи при любом типе управления

¹ В случае необходимости подключения импульсного управления 220 В, обратиться за информацией к техническому специалисту Ридан.

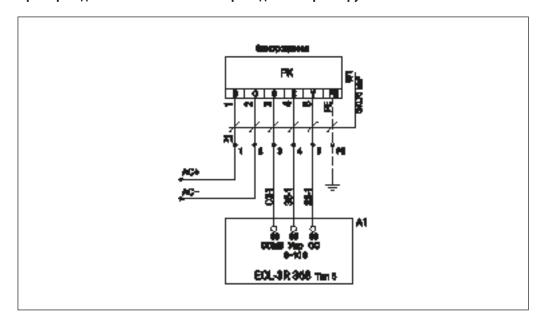


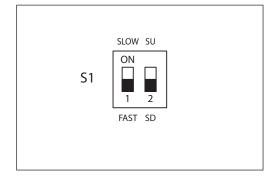
Схема электрических соединений (продолжение)

Пример подключения аналогового привода к контроллеру ECL-3R 368

Настройка DIP-переключателей

Ридан AMV-2000R SU/SD

Переключатель 1


Время перемещения штока на 1 мм.

- FAST 2 c/мм,
- SLOW 6 с/мм.

Переключатель 2

Действие привода при перебое питания.

- \bullet SU при перебое питания привод поднимает шток,
- \bullet SD при перебое питания привод опускает шток.

Ридан AME-2000R SU/SD

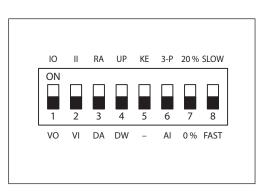
Переключатель 8

Время перемещения штока на 1 мм.

- FAST 2 c/мм,
- SLOW 6 c/мм.

Переключатель 4

Действие привода при перебое питания.


- \bullet UP при перебое питания привод поднимает шток,
- DW при перебое питания привод опускает шток.

Переключатель 5

Действие привода при отключении сигнала управления.

- КЕ привод опускает/поднимает шток, в зависимости от настройки переключателя 4,
- - привод сохраняет положение.

Прочие настройки указаны в руководстве по эксплуатации.

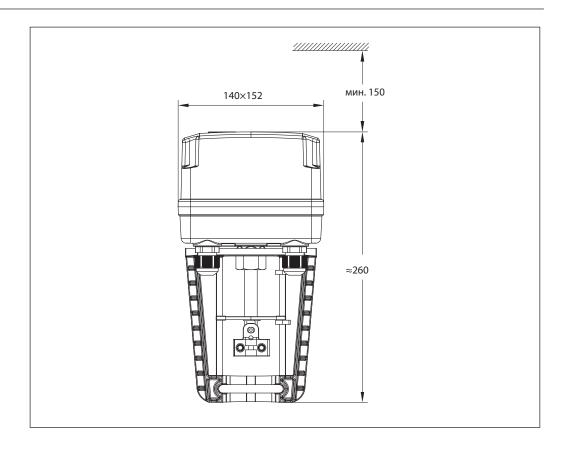
Редукторный электропривод Ридан AMV(E)-2000R SU/SD с функцией безопасности

Ручное позиционирование

Ручное позиционирование производится при отключенном напряжении. Вставьте шестигранный торцевой ключ в верхнюю часть привода. При вращении шестигранного ключа по часовой стрелке шток движется вниз, против

часовой стрелки — шток движется вверх. Проверьте правильность направления движения привода и установите в необходимом положе-

Функция безопасности


Функция безопасности полностью открывает или полностью закрывает клапан при обесточивании системы в зависимости от выбранного типа действия.

Комбинации электроприводов и регулирующих клапанов

Электропривод Ридан AMV(E)-2000R SU/SD совместим со следующими регулирующими клапанами:

- VFM-2R DN 65-80 мм;
- VF-3R DN 65-80 mm¹;
- VF-2R DN 65-80 MM:
- VFS-2R DN 15-80 MM1.

Габаритные размеры

¹ Установка привода AME-2000R SU/SD доступна только для VFM-2R, VF-2R DN65–80, VFS-2R и VF-3R DN65–80.

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Редукторный электропривод Ридан AMV(E)-1800R

Описание и область применения

Электропривод предназначен для управления регулирующими клапанами VFM-2R DN65–80, VF-3R DN65–80, VFS-2R DN15–80 и VF-2R DN65–80. Управление приводом Ридан AMV-1800R осуществляется по импульсному сигналу от трехпозиционных электронных регуляторов Ридан ECL-3R/4R или подобных. Привод Ридан AME-1800R управляется аналоговым сигналом.

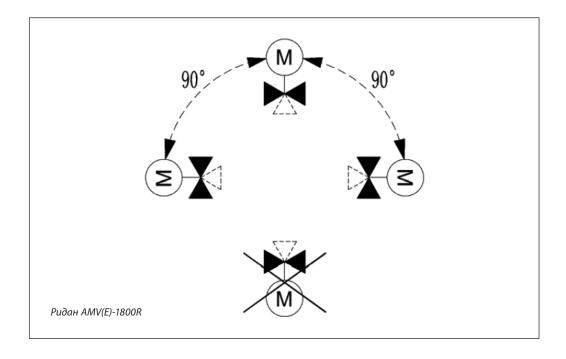
Кроме стандартных функций, таких как ручное позиционирование и индикация положения, привод имеет концевые моментные выключатели, которые защищают привод от перегрузок.

Основные характеристики

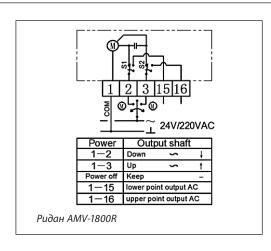
- Питающее напряжение: 24 или 220 В пер. тока
- Скорость перемещения штока привода 3,1 с на 1 мм.

Номенклатура и коды для оформления заказа

Тип	Питающее напряжение, В пер. тока	Кодовый номер
AMV-1800R	220	082G3443R1
AMV-1800R	24	082G3442R1
AME-1800R	220	082G3443R2
AME-1800R	24	082G3442R2


Технические характеристики

Модификация электропривода	Ридан AMV-1800R	Ридан AME-1800R
Питающее напряжение	24 В пер. тока, от –10 до +15 % 220 В пер. тока, от –10 до +15 %	
Потребляемая мощность, ВА	18	
Частота тока, Гц	50	
Принцип управления	Трехпозиционный	Аналоговый
Входной управляющий сигнал	Импульсный	0(2) – 10 В, 0(4) – 20 мА
Выходной сигнал обратной связи	Дискретный, в крайних положениях (опция 0(2)–10 В, 0(4)–20 мА) ¹⁾	0(2) – 10 В, 0(4) – 20 мА
Возвратная пружина	Нет	
Развиваемое усилие, Н	1800	
Максимальный ход штока, мм	50	25
Время перемещения штока на 1 мм, с	3,1	
Максимальная температура теплоносителя, °C	150	
Рабочая температура окружающей среды, °C	От –10 до 50	
Температура транспортировки и хранения, °C	От –40 до 70	
Класс защиты	IP54	
Масса, кг	4,3	


 $^{^{1}}$ Возможное исполнение под заказ.

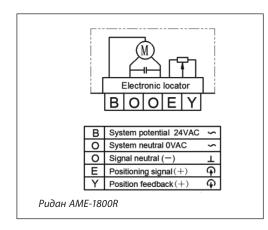
Монтажные положения

Схема электрических соединений

Ридан AMV-1800R

Рекомендуемое сечение жилы кабеля 1,5 ${\rm мм}^2$.

Клемма 2


Подача импульсного сигнала от регулятора — движение штока ВНИЗ.

Клемма 3

Подача импульсного сигнала от регулятора — движение штока BBEPX.

Клеммы 15 и 16

Сигнал обратной связи.

Ридан AME-1800R

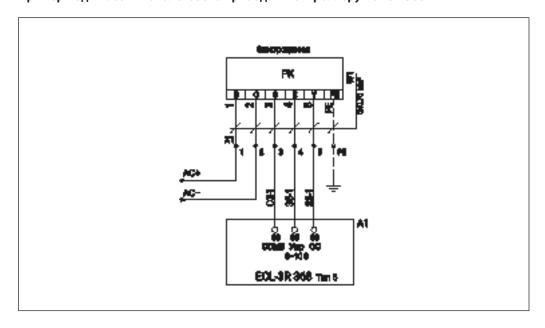
Рекомендуемое сечение жилы кабеля 1,5 мм².

В — фаза питающего напряжения (24 В пер. тока);

О — нейтраль, общий (0 В);

Е — входной управляющий сигнал (0–10 или

2–10 В, 0–20 или 4–20 мА);


Y — выходной сигнал обратной связи (0–10 или 2–10 В).

Версия привода с питанием 220 В пер. тока подключается аналогично.

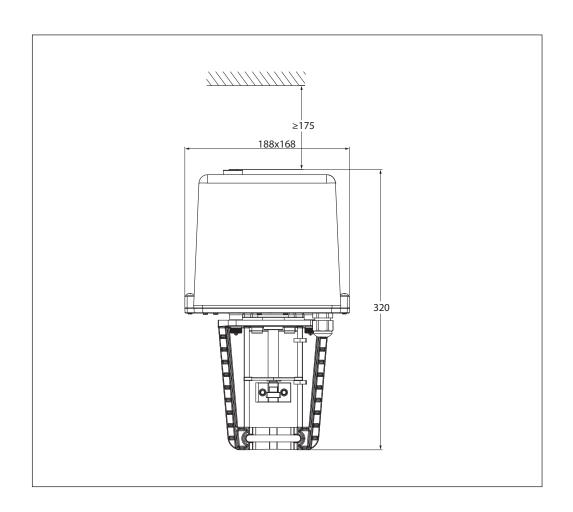
Редукторный электропривод Ридан AMV(E)-1800R

Схема электрических соединений (продолжение)

Пример подключения аналогового привода к контроллеру ECL-3R 368

Ручное позиционирование

Ручное позиционирование производится при отключенном напряжении. Вставить шестигранный торцевой ключ в верхнюю часть привода и поворачивать в сторону. Проверить правильное направление движения привода и установить в необходимом положении.


Комбинации электроприводов и регулирующих клапанов

Электропривод Ридан AMV(E)-1800R совместим со следующими регулирующими клапанами:

- VFM-2R DN 65-80 мм;
- VF-3R DN 65-80 мм;
- VFS-2R DN 15-80 мм;
- VF-2R DN 65-80.

Габаритные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Редукторный электропривод Ридан AMV(E)-3000R SU/SD с функцией безопасности

Описание и область применения

Электроприводы AMV(E)-3000R SU/SD предназначены для управления регулирующими клапанами импульсным или аналоговым сигналом от электронных регуляторов Ридан ECL-3R/4R или подобных в системах центрального теплои холодоснабжения, отопления, вентиляции и кондиционирования воздуха.

Внимание! Мощность источника питания должна быть достаточной для привода.

Электроприводы используются для управления седельными проходными регулирующими клапанами серий VFM-2R (DN100–200), VF-2R (DN100–200), VF-3R (DN100–150), VFS-2R (DN100–200).

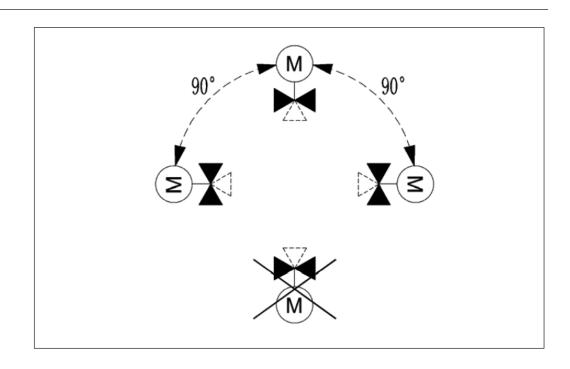
Особенности

- Функция безопасности привод опускает или поднимает шток при перебоях питания.
- Указатель положения.
- Перенастраиваемое время перемещения штока на 1 мм.
- Наличие функции автоподстройки под конечные положения штока клапана в аналоговом приводе.
- Наличие концевых выключателей в импульсном приводе.
- Питающие напряжение постоянное или переменное.
- Привод AME-3000R SU/SD можно использовать в режиме трехпозиционного управления с аналоговой обратной связью.

Основные характеристики

- Питающее напряжение (переменного или постоянного тока): 24 или 230 В.
- Входной сигнал регулирования: аналоговый или трехпозиционный импульсный.
- Развиваемое усилие: 3000 Н.
- Ход штока: 50 мм.
- Время перемещения штока на 1 мм: (перенастраиваемое) 1,2 или 3 с.
- Максимально допустимая температура теплоносителя: 150 °C.

Номенклатура и коды для оформления заказа


Тип	Питающее напряжение, В	Кодовый номер
AMV-3000R SU/SD	220	082G3453 R
AME-3000R SU/SD	24	082G3452 R

Редукторный электропривод Ридан AMV(E)-3000R SU/SD с функцией безопасности

Технические характеристики

Модификация электропривода	Ридан AMV-3000R SU/SD	Ридан AME-3000R SU/SD	
Питающее напряжение	220 В перем./пост. тока, ±10 %	24 В перем./пост. тока, ±10 %	
Потребляемая мощность, ВА	28		
Частота тока, Гц	50		
Принцип управления	Трехпозиционный	Аналоговый/трехпозиционный	
Входной управляющий сигнал	Импульсный	0(2)–10 В, 0(4)–20 мА/импульсный	
Выходной сигнал обратной связи	Концевые выключатели	0(2)-10 В, 0(4)-20 мА	
Функция безопасности	Да, при перебое питания привод опускает или поднимает шток (в зависимости от выбранной настройки)		
Развиваемое усилие, Н	3000		
Максимальный ход штока, мм	50		
Время перемещения штока на 1 мм, с	1,2/3		
Настраиваемое время перемещения	Да		
Рабочая температура окружающей среды, °C	От 0 до 55		
Температура транспортировки и хранения, °C	От –40 до 70		
Класс защиты	IP54(IP67)		
Масса, кг	4,2		

Монтажные положения

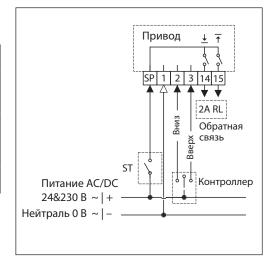


Схема электрических соединений

Ридан AMV-3000R SU/SD

Рекомендуемое сечение жил кабеля 1,5 мм².

Клемма SP	Фаза питающего напряжения для функции безопасности
Клемма 1	Нейтраль, общий (0 В)
Клемма 2	Подача импульсного сигнала от регулятора — движение штока ВНИЗ
Клемма 3	Подача импульсного сигнала от регулятора — движение штока ВВЕРХ
Клемма 14	Выход, сигнал концевого выключателя, нижнее положение
Клемма 15	Выход, сигнал концевого выключателя, верхнее положение

Ридан AME-3000R SU/SD

Внимание! Схема для питающего напряжения 24 В.

Рекомендуемое сечение жил кабеля 1,5 мм².

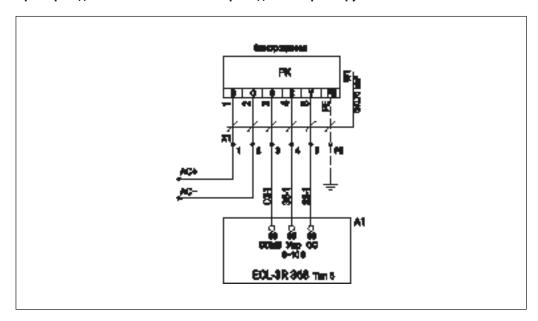

Клемма В	Фаза питающего напряжения 24 В или сигнал вниз
Клемма О	Нейтраль общая, нейтраль сигнала управления (0 В)
Клемма Е	Входной управляющий сигнал (0–10 или 2–10 В, или 4–20 мА) или сигнал вверх
Клемма Ү	Выходной сигнал обратной связи при любом типе управления
Клемма 3R	Фаза питающего напряжения для функции безопасности (при импульсном подключение)

Схема электрических соединений (продолжение)

Пример подключения аналогового привода к контроллеру ECL-3R 368

Редукторный электропривод Ридан AMV(E)-3000R SU/SD с функцией безопасности

Ручное позиционирование

Ручное позиционирование производится при отключенном напряжении. Вставьте шестигранный торцевой ключ в верхнюю часть привода. При вращении шестигранного ключа по часовой стрелке шток движется вниз, против

часовой стрелки — шток движется вверх. Проверьте правильность направления движения привода и установите в необходимом положении.

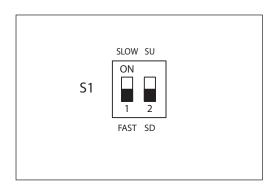
Функция безопасности

Функция безопасности полностью открывает или полностью закрывает клапан при обесточивании системы в зависимости от выбранного типа действия.

Настройка DIP-переключателей

Ридан AMV-3000R SU/SD

Переключатель 1


Время перемещения штока на 1 мм.

- FAST 2 c/мм,
- SLOW 6 c/мм.

Переключатель 2

Действие привода при перебое питания.

- SU при перебое питания привод поднимает шток,
- SD при перебое питания привод опускает шток.

Ридан AME-3000R SU/SD

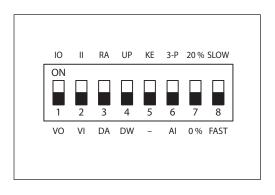
Переключатель 8

Время перемещения штока на 1 мм.

- FAST 2 c/мм,
- SLOW 6 с/мм.

Переключатель 4

Действие привода при перебое питания.

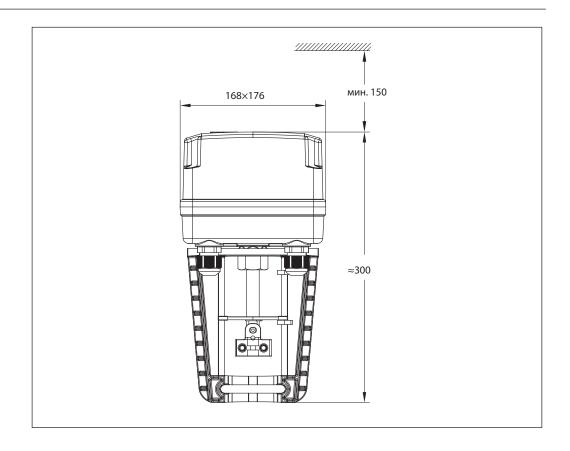

- \bullet UP при перебое питания привод поднимает шток,
- DW при перебое питания привод опускает шток.

Переключатель 5

Действие привода при отключении сигнала управления.

- KE привод опускает/поднимает шток, в зависимости от настройки переключателя 4,
- - привод сохраняет положение.

Прочие настройки указаны в руководстве по эксплуатации.



Комбинации электроприводов и регулирующих клапанов Электропривод Ридан AMV(E)-3000R SU/SD совместим со следующими регулирующими клапанами:

- VFM-2R DN 100-200 мм;
- VF-3R DN 100-150 мм;
- VF-2R DN 100-200 мм;
- VFS-2R DN 100-200 мм.

Габаритные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», поготип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Редукторный электропривод Ридан AMV(E)-3000R

Описание и область применения

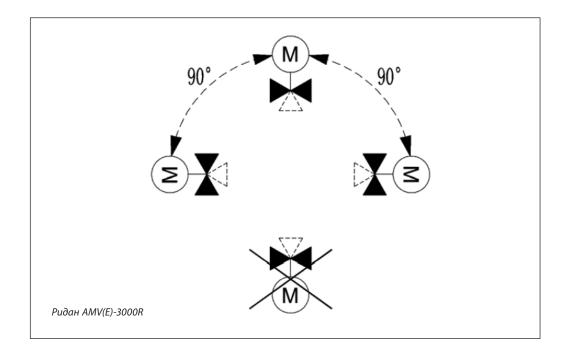
Электропривод предназначен для управления регулирующими клапанами VFM-2R DN100–200, VF-3R DN100–150, VFS-2R DN100–200 и VF-2R DN100–200. Управление приводом Ридан AMV-3000R осуществляется по импульсному сигналу от трехпозиционных электронных регуляторов Ридан ECL-3R/4R или подобных. Привод Ридан AME-3000R управляется аналоговым сигналом.

Кроме стандартных функций, таких как ручное позиционирование и индикация положения, привод имеет концевые моментные выключатели, которые защищают привод от перегрузок.

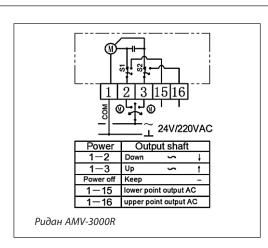
Основные характеристики

- Питающее напряжение: 24 или 220 В пер. тока
- Скорость перемещения штока привода 3,1 с на 1 мм.

Номенклатура и коды для оформления заказа


Тип	Питающее напряжение, В пер. тока	Кодовый номер
AMV-3000R	220	082G3443 R3
AMV-3000R	24	082G3442 R3
AME-3000R	220	082G3443 R4
AME-3000R	24	082G3442 R4

Технические характеристики


Модификация электропривода	Ридан AMV-3000R	Ридан AME-3000R
Питающее напряжение	24 В пер. тока, от –10 до +15 % 220 В пер. тока, от –10 до +15 %	
Потребляемая мощность, ВА	18	3
Частота тока, Гц	50)
Принцип управления	Трехпозиционный	Аналоговый
Входной управляющий сигнал	Импульсный	0(2) – 10 В, 0(4) – 20 мА
Выходной сигнал обратной связи	Дискретный, в крайних положениях	0(2) – 10 В, 0(4) – 20 мА
Возвратная пружина	Нет	
Развиваемое усилие, Н	3000	
Максимальный ход штока, мм	50	
Время перемещения штока на 1 мм, с	3,1	
Максимальная температура теплоносителя, °C	150	
Рабочая температура окружающей среды, ${}^{\circ}\text{C}$	От –10 до 50	
Температура транспортировки и хранения, °C	От –40 до 70	
Класс защиты	IP54	
Масса, кг	4,	7

Монтажные положения

Схема электрических соединений

Ридан AMV-3000R

Рекомендуемое сечение жилы кабеля 1,5 мм².

Клемма 2

Подача импульсного сигнала от регулятора — движение штока ВНИЗ.

Клемма 3

Подача импульсного сигнала от регулятора — движение штока BBEPX.

Клеммы 15 и 16

Сигнал обратной связи.

Ридан AME-3000R

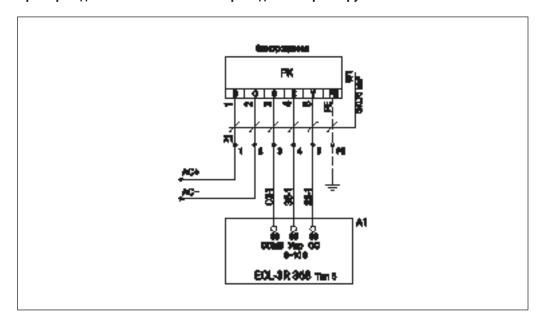
Рекомендуемое сечение жилы кабеля 1,5 мм².

В — фаза питающего напряжения (24 В пер. тока);

О — нейтраль, общий (0 В);

Е — входной управляющий сигнал (0–10 или

2–10 В, 0–20 или 4–20 мА);


Y — выходной сигнал обратной связи (0–10 или 2–10 В).

Версия привода с питанием 220 В пер. тока подключается аналогично.

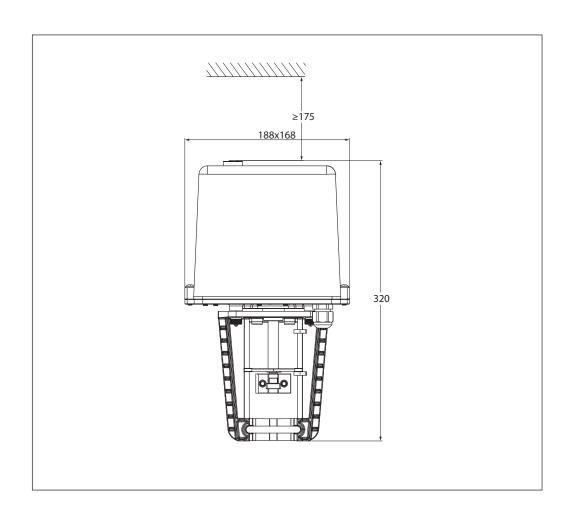
Редукторный электропривод Ридан AMV(E)-3000R

Схема электрических соединений (продолжение)

Пример подключения аналогового привода к контроллеру ECL-3R 368

Ручное позиционирование

Ручное позиционирование производится при отключенном напряжении. Вставить шестигранный торцевой ключ в верхнюю часть привода и поворачивать в сторону. Проверить правильное направление движения привода и установить в необходимом положении.


Комбинации электроприводов и регулирующих клапанов

Электропривод Ридан AMV(E)-3000R совместим со следующими регулирующими клапана-

- VFM-2R DN 100-200 мм;
- VF-3R DN 100-150 мм;
- VFS-2R DN 100-200 MM;
- VF-2R DN 100-200.

Габаритные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Редукторный электропривод Ридан AMV(E)-6500R

Описание и область применения

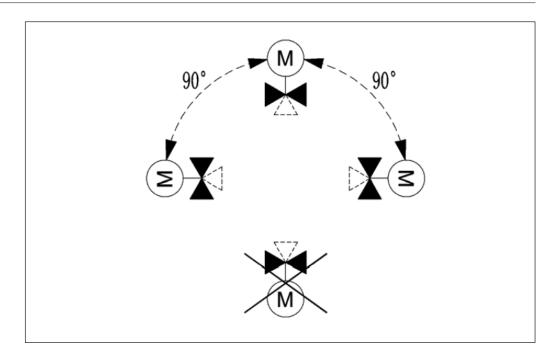
Электропривод предназначен для управления регулирующими клапанами VFM-2R DN250, VF-2R DN250 и VF-3R DN100–250. Управление приводом Ридан AMV-6500R осуществляется по импульсному сигналу от трехпозиционных электронных регуляторов Ридан ECL-3R/4R или подобных. Привод Ридан AME-6500R управляется аналоговым сигналом.

Кроме стандартных функций, таких как ручное позиционирование и индикация положения, привод имеет концевые моментные выключатели, которые защищают привод от перегрузок.

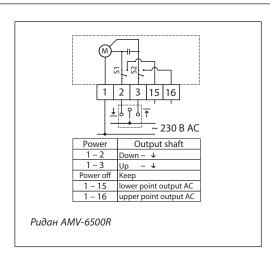
Основные характеристики

- Питающее напряжение: 220 В пер. тока.
- Скорость перемещения штока привода 2,1 с на 1 мм.

Номенклатура и коды для оформления заказа


Тип	Питающее напряжение, В пер. тока	Кодовый номер
AMV-6500R	220	082G3443 R5
AME-6500R	220	082G3443 R6

Технические характеристики


Модификация электропривода	Ридан AMV-6500R	Ридан AME-6500R
Питающее напряжение	220 В пер. тока, от –10 до +15 %	
Потребляемая мощность, ВА	25	
Частота тока, Гц	50/6	50
Принцип управления	Трехпозиционный	Аналоговый
Входной управляющий сигнал	Импульсный	0(2) – 10 B, 0(4) – 20 mA
Выходной сигнал обратной связи	Дискретный, в крайних положениях	0(2) – 10 B, 0(4) – 20 mA
Возвратная пружина	Нет	
Развиваемое усилие, Н	6500	
Максимальный ход штока, мм	60	
Время перемещения штока на 1 мм, с	2,1	
Максимальная температура теплоносителя, °C	150	
Рабочая температура окружающей среды, °C	От –10 до 55	
Температура транспортировки и хранения, °C	От -40 до 70	
Класс защиты	IP64	
Масса, кг	а, кг 10	

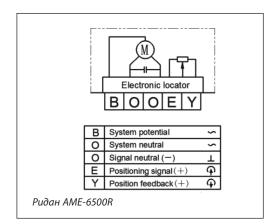
Монтажные положения

Схема электрических соединений

Ридан AMV-6500R

Рекомендуемое сечение жилы кабеля 1,5 мм².

Клемма 2


Подача импульсного сигнала от регулятора — движение штока ВНИЗ.

Клемма 3

Подача импульсного сигнала от регулятора — движение штока BBEPX.

Клеммы 15 и 16

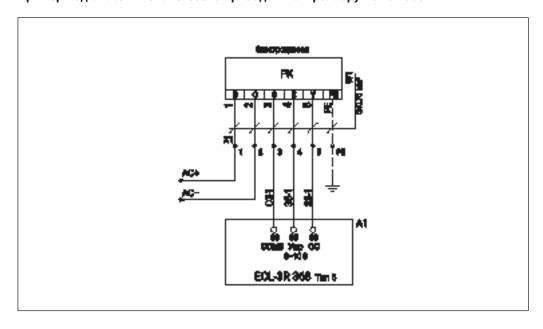
Сигнал обратной связи.

Ридан AME-6500R (220 В пер. тока)

Рекомендуемое сечение жилы кабеля 1,5 мм 2 .

В — фаза питающего напряжения (220 В пер. тока);

О — нейтраль, общий (0 В);


E — входной управляющий сигнал (0–10 или 2–10 В, 0–20 или 4–20 мА);

Y — выходной сигнал обратной связи (0–10 или 2–10 В).

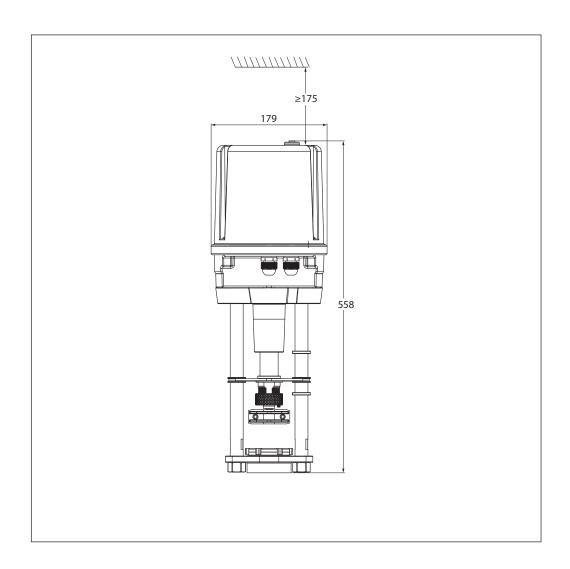
Редукторный электропривод Ридан AMV(E)-6500R

Схема электрических соединений (продолжение)

Пример подключения аналогового привода к контроллеру ECL-3R 368

Ручное позиционирование

Ручное позиционирование производится при отключенном напряжении. Вставить шестигранный торцевой ключ в верхнюю часть привода и поворачивать в сторону. Проверить правильное направление движения привода и установить в необходимом положении.


Комбинации электроприводов и регулирующих клапанов

Электропривод Ридан AMV(E)-6500R совместим со следующими регулирующими клапанами:

- VFM-2R DN 250 мм;
- VF-3R DN 100-250 мм;
- VF-2R DN250.

Габаритные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», поготип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Редукторный электропривод Ридан AMV(E)-10KR

Описание и область применения

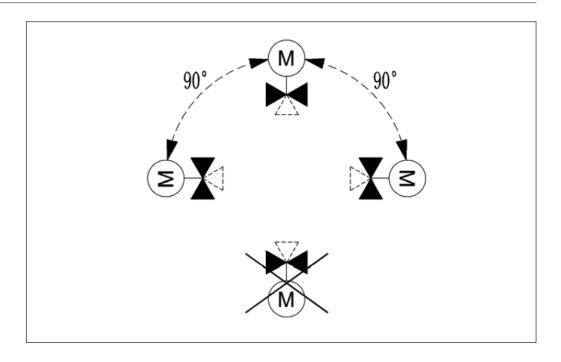
Электропривод предназначен для управления регулирующими клапанами VFM-2R DN300–400, VF-3R DN100–300 и VF-2R DN300. Управление приводом Ридан AMV-10KR осуществляется по импульсному сигналу от трехпозиционных электронных регуляторов Ридан ECL-3R/4R или подобных. Привод Ридан AME-10KR управляется аналоговым сигналом.

Кроме стандартных функций, таких как ручное позиционирование и индикация положения, привод имеет концевые моментные выключатели, которые защищают привод от перегрузок.

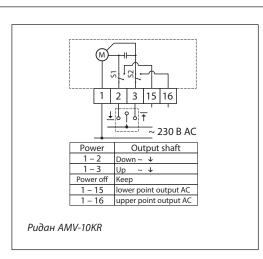
Основные характеристики

- Питающее напряжение: 220 В пер. тока.
- Скорость перемещения штока привода 2,1 с на 1 мм.

Номенклатура и коды для оформления заказа


Тип	Питающее напряжение, В пер. тока	Кодовый номер
AMV-10KR	220	082G3443R7
AME-10KR	220	082G3443R8

Технические характеристики


Модификация электропривода	Ридан AMV-10KR	Ридан AME-10KR
Питающее напряжение	220 В пер. тока, от –10 до +15 %	
Потребляемая мощность, ВА	25	
Частота тока, Гц	50/6	0
Принцип управления	Трехпозиционный	Аналоговый
Входной управляющий сигнал	Импульсный	0(2) – 10 В, 0(4) – 20 мА
Выходной сигнал обратной связи	Дискретный, в крайних положениях	0(2) – 10 В, 0(4) – 20 мА
Возвратная пружина	Нет	
Развиваемое усилие, Н	10000	
Максимальный ход штока, мм	100	
Время перемещения штока на 1 мм, с	2,1	
Максимальная температура теплоносителя, °C	150	
Рабочая температура окружающей среды, °C	От –10 до 55	
Температура транспортировки и хранения, °C	От -40 до 70	
Класс защиты	IP64	
Масса, кг	12	

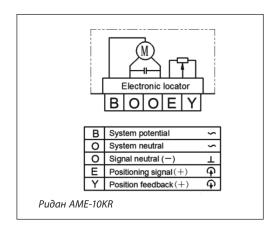
Монтажные положения

Схема электрических соединений

Ридан AMV-10KR

Рекомендуемое сечение жилы кабеля 1,5 мм².

Клемма 2


Подача импульсного сигнала от регулятора — движение штока ВНИЗ.

Клемма 3

Подача импульсного сигнала от регулятора — движение штока BBEPX.

Клеммы 15 и 16

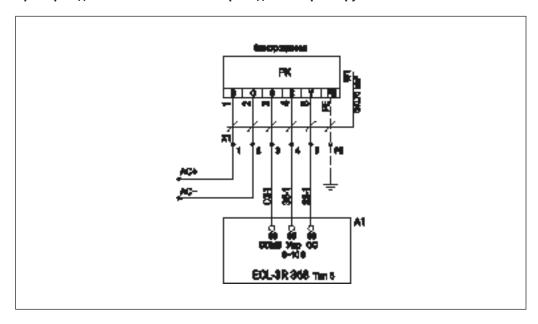
Сигнал обратной связи.

Ридан AME-10KR

Рекомендуемое сечение жилы кабеля 1,5 ${\rm мм}^2$.

В — фаза питающего напряжения (220 В пер. тока);

О — нейтраль, общий (0 В);


E — входной управляющий сигнал (0–10 или 2–10 В, 0–20 или 4–20 мА);

Y — выходной сигнал обратной связи (0–10 или 2–10 В).

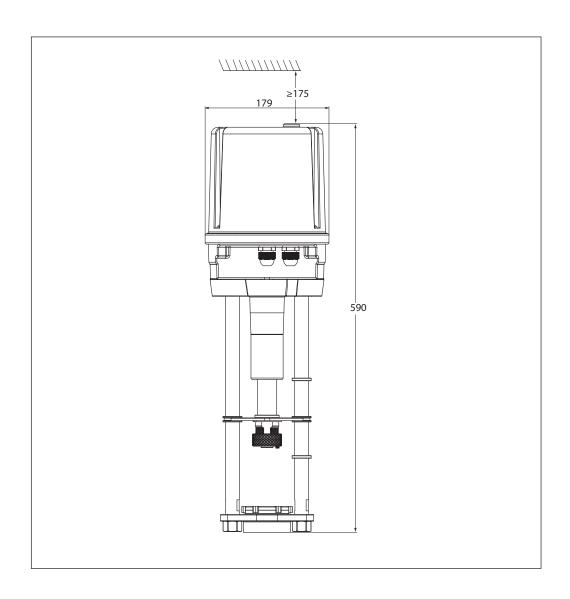
Редукторный электропривод Ридан AMV(E)-10KR

Схема электрических соединений (продолжение)

Пример подключения аналогового привода к контроллеру ECL-3R 368

Ручное позиционирование

Ручное позиционирование производится при отключенном напряжении. Вставить шестигранный торцевой ключ в верхнюю часть привода и поворачивать в сторону. Проверить правильное направление движения привода и установить в необходимом положении.


Комбинации электроприводов и регулирующих клапанов

Электропривод Ридан AMV(E)-10KR совместим со следующими регулирующими клапанами:

- VFM-2R DN 300-400 мм;
- VF-3R DN 100-300 мм;
- VF-2R DN 300 мм.

Габаритные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Редукторный электропривод Ридан AMV(E)-26KSR

Описание и область применения

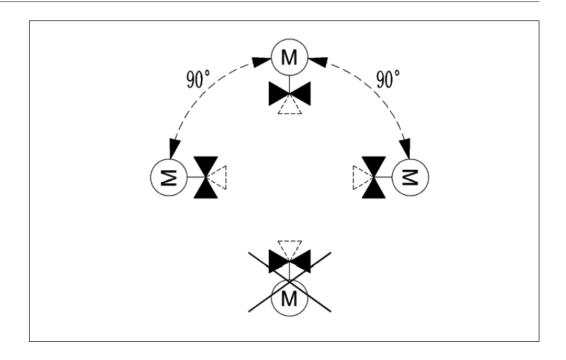
Электропривод предназначен для управления регулирующими клапанами VF-3R DN350–400. Управление приводом Ридан AMV-26KSR осуществляется по импульсному сигналу от трехпозиционных электронных регуляторов Ридан ECL-3R/4R или подобных. Привод Ридан AME-26KSR управляется аналоговым сигналом.

Кроме стандартных функций, таких как ручное позиционирование и индикация положения, привод имеет концевые моментные выключатели, которые защищают привод от перегрузок.

Основные характеристики

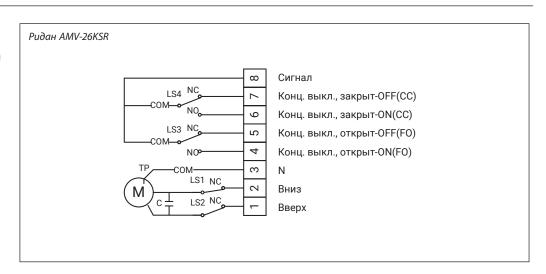
- Питающее напряжение: 220 В пер. тока.
- Скорость перемещения штока привода 1 с на 1 мм.

Номенклатура и коды для оформления заказа


Тип	Питающее напряжение, В пер. тока	Кодовый номер
AMV-26KSR	220	082G3443R11
AME-26KSR	220	082G3443R13

Технические характеристики

Модификация электропривода	Ридан AMV-26KSR	Ридан AME-26KSR
Питающее напряжение	220 В пер. тока, от –10 до +15 %	
Потребляемая мощность, ВА	220	
Частота тока, Гц	50/	60
Принцип управления	Трехпозиционный	Аналоговый
Входной управляющий сигнал	Импульсный	4–20 mA
Выходной сигнал обратной связи	Дискретный, в крайних положениях	4–20 мА
Возвратная пружина	Нет	
Развиваемое усилие, Н	26000	
Максимальный ход штока, мм	100	
Время перемещения штока на 1 мм, с	1	
Максимальная температура теплоносителя, °C	150	
Рабочая температура окружающей среды, °C	От –10 до 55	
Температура транспортировки и хранения, °C	От –40 до 70	
Класс защиты	IP64	
Масса, кг	26	5



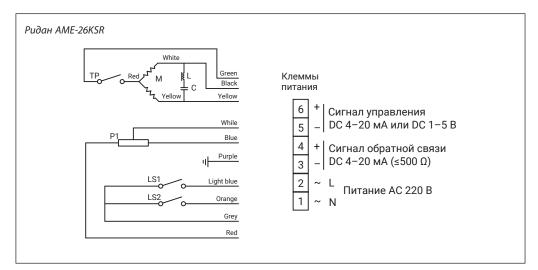
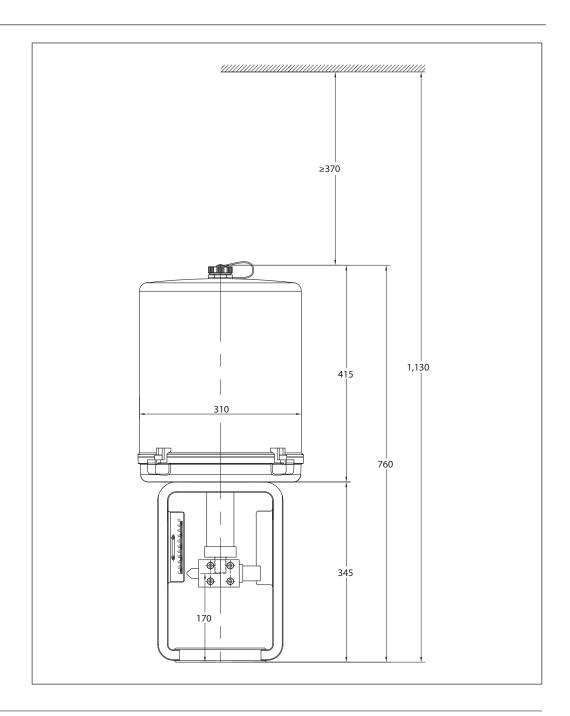

Монтажные положения

Схема электрических соединений

Рекомендуемое сечение жилы кабеля $1,5\,\,\mathrm{mm}^2.$

Редукторный электропривод Ридан AMV(E)-26KSR

Ручное позиционирование


Ручное позиционирование производится при отключенном напряжении. Вставить шестигранный торцевой ключ в верхнюю часть привода и поворачивать в сторону. Проверить правильное направление движения привода и установить в необходимом положении.

Комбинации электроприводов и регулирующих клапанов

Электропривод Ридан AMV(E)-26KSR совместим со следующими регулирующими клапанами:

• VF-3R DN 350-400 мм

Габаритные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Редукторный электропривод Ридан AMV(E)-1000R

Описание и область применения

Электропривод предназначен для управления регулирующими клапанами VRB-2R/3R DN 15–50 и AQT-R DN 40–50. Управление приводом Ридан AMV-1000R осуществляется по импульсному сигналу от трехпозиционных электронных регуляторов Ридан ECL-3R/4R или подобных. Приводы Ридан AME-1000R управляются аналоговым сигналом.

Кроме стандартных функций, таких как ручное позиционирование и индикация положения, приводы имеют концевые моментные выключатели, которые защищают привод от перегрузок.

Основные характеристики

- Питающее напряжение:
 AMV-1000R 24 или 220 В перем./пост. тока;
 AME-1000R 24 В перем./пост. тока.¹
- Скорость перемещения штока импульсного привода настраиваемая 1,2/3 с на 1 мм. Скорость перемещения штока аналогового привода 3,9 с или настраиваемая скорость 1,2/3,3 с на 1 мм.¹

Номенклатура и коды для оформления заказа

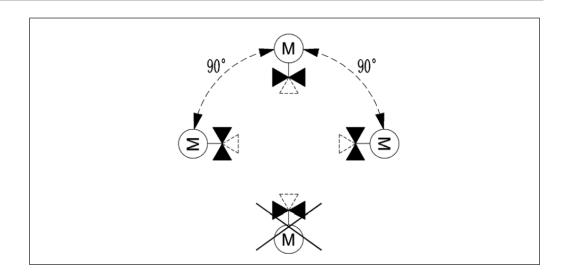
Тип	Питающее напряжение, В	Кодовый номер
AMV-1000R	220	082G3024 R
AMV-1000R	24	082G3023 R
AME-1000R	24	082G3025 R

Дополнительные принадлежности

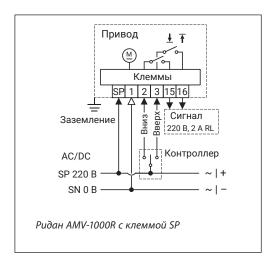
Наименование	Кодовый номер
Концевой выключатель (2 контакта) для AMV-1000R	08GH3201R ¹

¹ Установка доступна только на приводах импульсного типа с датой производства начиная с 3 недели 2024 г (03/24).

¹ 24 перем./пост. тока и настраиваемая скорость привода доступны на приводах аналогового типа с датой производства начиная с 15 недели 2025 г. (15/25).



Технические характеристики


Модификация электропривода	Ридан AMV-1000R	Ридан AME-1000R
Питающее напряжение	24 В перем./пост. тока, от –10 до +10 % 220 В перем./пост. тока, от –10 до +10 %	24 В перем./пост. тока, ¹ от –10 до +10 %
Потребляемая мощность, ВА	6,7	
Частота тока, Гц	50	
Принцип управления	Трехпозиционный	Аналоговый
Входной управляющий сигнал	Импульсный	0(2) – 10 B, 0(4) – 20 mA
Выходной сигнал обратной связи	Дискретный, в крайних положениях	0(2) – 10 B, 0(4) – 20 mA
Возвратная пружина	Нет	
Развиваемое усилие, Н	1000	
Максимальный ход штока, мм	22	
Время перемещения штока на 1 мм, с	1,2/3	3,9 или 1,2/3,3 ¹
Максимальная температура теплоносителя, °С	130	
Рабочая температура окружающей среды, °C	От –10 до 50	
Температура транспортировки и хранения, °С	От -40 до 70	
Класс защиты	IP54	
Масса, кг	1,9	

¹ 24 перем./пост. тока и настраиваемая скорость привода доступны на приводах аналогового типа с датой производства начиная с 15 недели 2025 г. (15/25).

Монтажные положения

Схема электрических соединений

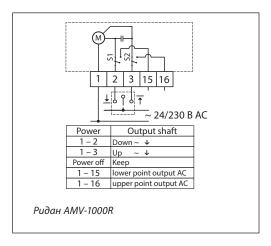
Электрическая схема AMV-1000R 220B с клеммой SP

Внимание!

Клемма SP обязательна для подключения.

Клемма SP: фаза, 220 В. **Клемма 1:** нейтраль, 0 В.

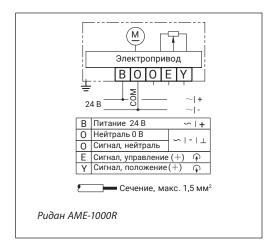
Клемма 2: подача импульсного сигнала от регулятора — движение штока вниз.


Клемма 3: подача импульсного сигнала от регулятора — движение штока вверх.

Клемма 15: дискретный сигнал обратной связи при достижении приводом крайнего нижнего

Клемма 16: дискретный сигнал обратной связи при достижении приводом крайнего верхнего положения.

Схема электрических соединений (продолжение)


Ридан AMV-1000R

Рекомендуемое сечение жилы кабеля 1,5 мм².

Клемма 2: подача импульсного сигнала от регулятора — движение штока вниз.

Клемма 3: подача импульсного сигнала от регулятора — движение штока вверх.

Клеммы 15 и 16: сигнал обратной связи.

Ридан AME-1000R

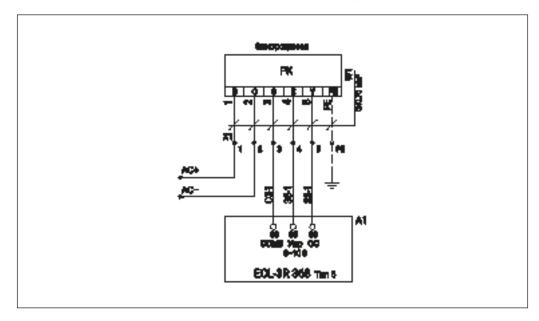
Внимание!

Для AME-1000R с датой выпуска до 15/25 питающее напряжение только 24 В пер. тока.

Рекомендуемое сечение жилы кабеля 1,5 мм².

В — фаза питающего напряжения (24 В пер. тока);

О — нейтраль, общий (0 В);


Е — входной управляющий сигнал (0-10 или

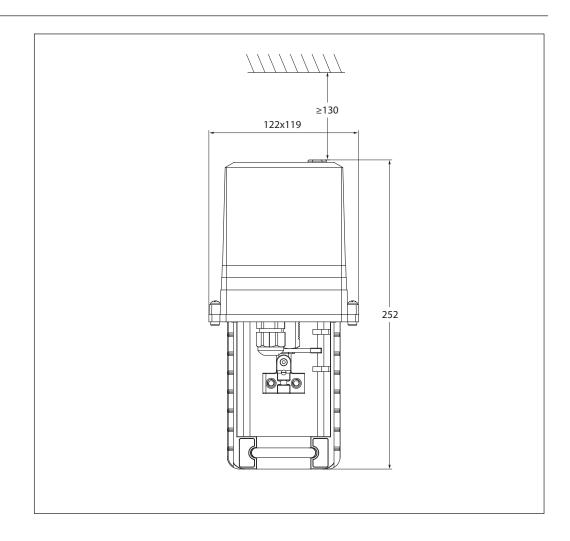
2-10 В, 0-20 или 4-20 мА);

Y — выходной управляющий сигнал (0-10 или

2-10 В, 0-20 или 4-20 мА).

Пример подключения аналогового привода к контроллеру ECL-3R 368

Ручное позиционирование


Ручное позиционирование производится при отключенном напряжении. Вставить шестигранный торцевой ключ в верхнюю часть привода и поворачивать в сторону. Проверить правильное направление движения привода и установить в необходимом положении.

Комбинации электроприводов и регулирующих клапанов

Электропривод Ридан AMV(E)-1000R совместим со следующими регулирующими клапана-

- VRB-2R DN 15-50 мм;
- VRB-3R DN 15-50 MM;
- AQT-R DN 40-50.

Габаритные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Редукторные электроприводы AMB-162R, AMB-182R для поворотных регулирующих клапанов

Описание и область применения

Привод электрический поворотный Ридан AMB-162R 2-/3-позиционный предназначен для управления шаровыми кранами Ридан AMZ-112R, AMZ-113R, клапанами Ридан HRB-3R, HFE-3R DN20–100 и аналоговый привод для управления поворотными клапанами Ридан HRB-3R, HFE-3R DN20–100. AMB-182R предназначен для HFE-3R DN125–150, при регулировании температуры в системах централизованного теплоснабжения.

Преимущества

- Индикатор текущего положения клапана.
- Ручной режим управления клапаном. Активируется с помощью встроенного переключателя.
- Бесшумная и надежная работа.
- Аналоговая версия AMB-162R имеет DIPпереключатели скорости.
- Комбинированный 2-/3-позиционный привод.

Основные характеристики

- Номинальное напряжение:
 - 24 В перем., 50/60 Гц импульсный AMB-162R;
 - 230 B перем., 50/60 Гц импульсный;
 - 24 В перем./пост. аналоговый;
 - 24 В перем./пост. импульсный AMB-182R.
- Крутящий момент: 10 Нм AMB-162R, 20 Нм AMB-182R.
- Угол поворота 90°.
- Время поворота на 90°: 60 и 120 сек. для AMB-162R (возможность изменения скорости благодаря DIP-переключателям для аналоговой версии); 150 сек. для AMB-182R.
- Сигнал управления:
 - импульсный;
 - аналоговый (0-10 B).

Номенклатура и коды для оформления заказа

Приводы электрические AMB-162R и AMB-182R

Привод	Тип управления	Крутящий момент, Нм	Время поворота на 90°, с	Напряжение питания, В	Сигнал управления	Кодовый номер
_	Импульсный		60	24 AC	2-/3-поз.	082H0214R
	Импульсный		120	24 AC	2-/3-поз.	082H0215R
AMB-162R	Импульсный	10	60	230	2-/3-поз.	082H0224R
	Импульсный		120	230	2-/3-поз.	082H0225R
	Аналоговый		60 или 120	24 AC/DC	0(2)-10 B	082H0230R
	Импульсный			24 AC/DC	24	082H0236R
AMB-182R	Импульсный	20	150	230	230	082H0240R
	Аналоговый			24 AC/DC	0(2)-10 B	082H0241R

Внимание!

В комплекте с комбинированным 2-/3-позиционным приводом AMB-162R поставляется монтажный комплект для клапанов AMZ-112R, AMZ-113R, HRB-3R и HFE-3R.

В комплекте с 3-позиционным/аналоговым приводом AMB-162R поставляется монтажный комплект для клапанов HFE-3R и HRB-3R. Для установки привода AMB-162R с 3-позиционным/аналоговым управлением на шаровой кран AMZ-112R/AMZ-113R монтажный комплект, соответствующий диаметру клапана, приобретается отдельно.

В комплекте с приводом АМВ-182R монтажный комплект не поставляется.

Редукторные электроприводы AMB-162R, AMB-182R для поворотных регулирующих клапанов

Номенклатура и коды для оформления заказа (продолжение)

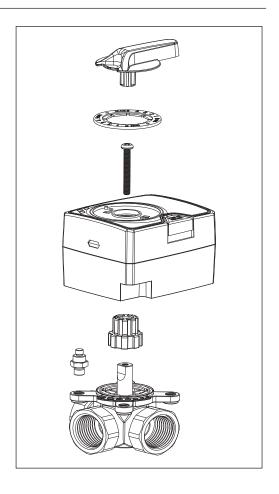
Дополнительные принадлежности

Наименование	Кодовый номер
Монтажный комплект для AMZ DN 15–32	082H0210R
Монтажный комплект для AMZ DN 40–50	082H0211R
Комплект для монтажа привода AMB-182R на клапаны HFE-3R DN125–150	082H0254R

Адаптеры для присоединения клапанов AMZ к электроприводам AMB-162R, и для клапанов HFE-3R DN125-150 к электроприводам AMB-182R.

Технические характеристики

Электропривод	AMB-162R	AMB-182R
Питающее напряжение	24 В перем./пост. (аналоговый) или 230 В перем. или 24 В перем.	24 В перем./пост. или 230 В перем.
Потребляемая мощность, Вт	5	3
Частота тока, Гц	50/60	
Время поворота, c/90°	60/120 150	
Управление	Импульсное/аналоговое 0(2)–10 B	
Сигнал обратной связи	Выключатель/аналоговый 0(2)–10 В	
Крутящий момент, Нм	10 ¹	20
Угол поворота, град	90	
Максимальная температура регулируемой среды, °С	110	
Рабочая температура окружающей среды, °C	От –10 до 50	
Относительная влажность окружающей среды, %	5–95, без выпадения конденсата	
Температура транспортировки и хранения, °С	От -30 до 80	
Класс электрической защиты	II в соответствии с EN 60730-1	
Класс защиты корпуса	IP42	IP54
Длина провода, м		1
Материал корпуса	Поликарбонат	
Масса, г	450	800

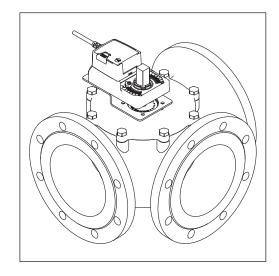

¹ для партий с датой производства до 01.05.2023 (18/23) — 6 нМ.

Монтаж привода

Привод электрический AMB-162R устанавливается непосредственно на регулирующий поворотный клапан.

Последовательность монтажа:

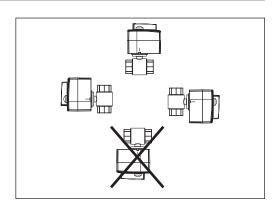
- 1. Поворотный клапан/шаровой кран.
- 2. Антивращательная шпилька/кольцо.
- 3. Адаптер для установки привода (красный для поворотного клапана; синий для шарового крана).
- 4. Привод.
- 5. Индикатор положения.
- 6. Рукоятка.
- 7. Фиксирующий винт.


Редукторные электроприводы AMB-162R, AMB-182R для поворотных регулирующих клапанов

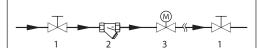
Монтаж привода (продолжение)

Привод электрический AMB-182R устанавливается непосредственно на регулирующий поворотный клапан.

Последовательность монтажа:


- 1. Поворотный клапан/шаровой кран.
- 2. Кронштейн для установки привода поворотного клапана; синий для шарового крана).
- 3. Адаптер для установки привода.
- 4. Привод.
- 5. Комплект крепежа.

Установка

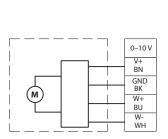

Привод может быть установлен непосредственно на поворотном клапане.

Монтаж клапана с приводом возможен в любом положении, кроме положения приводом вниз.

Установка гидравлической системы

Рекомендуемый пример установки регулирующего клапана с электроприводом

- 1 шаровой кран;
- 2 фильтр;
- 3 клапан с электрическим приводом АМВ.



Переключение в режим ручного управления

Ручное позиционирование привода доступно после нажатия кнопки на корпусе.

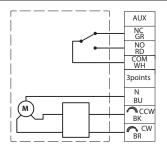
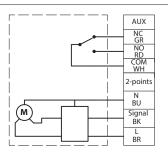


Схема электрических соединений AMB-162R

Аналоговый


BN – brown (коричневый), питание BK – black (черный), GND BU – blue (синий), управление 0–10 В WH – white (белый), сигнал обратной связи 0–10 В

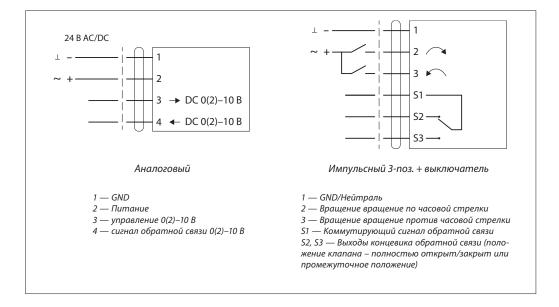
Импульсный 3-поз. + выключатель¹

BU – blue (синий), нейтраль

BK — black (черный), против часовой стрелки
BR — brown (коричневый), по часовой стрелке
GR¹ — green (зеленый) выход концевого выключателя «закрыт»
RD¹ — red (красный) выход концевого выключателя «открыт»
WH¹ — white (белый) коммутирующийся сигнал обратной связи

Импульсный 2-поз. + выключатель

BU — blue (синий), нейтраль
BK — black (черный), сигнал на открытие/закрытие
BR — brown (коричневый), питание
GR — green (зеленый) выход концевого выключателя «закрыт»
RD — red (красный) выход концевого
выключателя «открыт»
WH — white (белый) коммутирующийся сигнал обратной связи


Принцип работы концевого выключателя — сигнал СОМ замыкается на NO только в крайнем положении привода по часовой стрелке, в любом другом положении привода сигнал будет замкнут на NC.

¹ Доступны на приводах с датой производства от 03/24

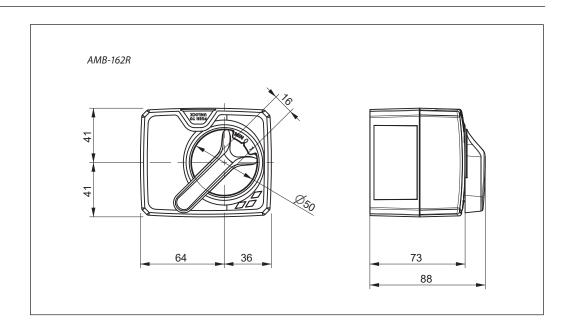
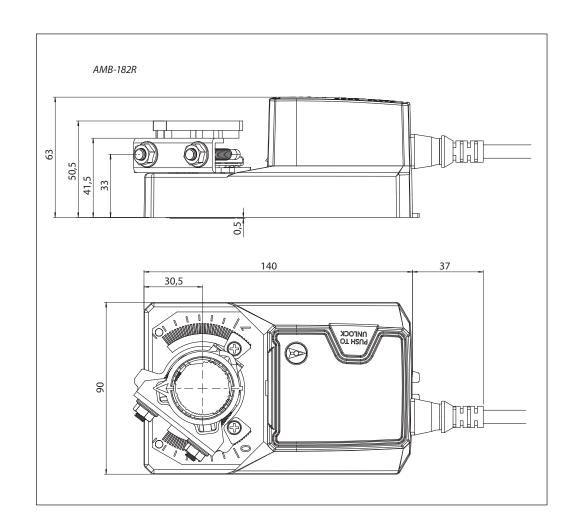


Схема электрических соединений AMB-182R



Габаритные размеры

Габаритные размеры *(продолжение)*

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Адаптер для присоединения клапанов VFM-2R DN15-50 к электроприводам ARV-1000R и ARE-1000VFM-R

Описание и область применения

Адаптер предназначен для установки на клапанах VFM-2R (DN15–50) Ридан и клапанах VFM2/VB2 (DN15–50) Danfoss и монтажа приводов Ридан ARV-1000R и ARE-1000VFM-R для управления данными клапанами. Адаптер состоит из резьбового адаптера и штока.

Номенклатура и коды для оформления заказа

Тип электропривода	Тип и DN регулирующих клапанов	Кодовый номер	
ARV-1000R	VFM-2R/VFM2/VB2, DN=15-50 мм		
ARE-1000VFM-R	VFM-2R/VFM2/VB2, DN=15-50 мм	065Z0311R	

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Адаптер для присоединения клапанов VFM2 DN65-DN150 и VF3 DN100-DN150 к электроприводам AMV(E)-1800/3000R

Описание и область применения

Адаптер предназначен для установки на клапанах VFM2 (DN65–150) и VF3 (DN100–150) Danfoss и монтажа приводов Ридан AMV(E)-1800/3000R для управления данными клапанами. Адаптер состоит из двух переходников, адаптера штока, и гайки.

Номенклатура и коды для оформления заказа

Тип электропривода	Тип и DN регулирующих клапанов	Кодовый номер
AMV-1800R	VFM2, DN = 65-80 мм	
AMV(E)-3000R	VFM2, DN = 65–150 мм; VF3, DN = 100–150 мм ¹⁾	065Z0312R

¹ Установка адаптера и привода Ридан на клапан VF3 DN100–150 возможна только в том случае если ранее применялся привод AME655/658.

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», поготип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Адаптер для присоединения клапанов VF3, VF2, VL, VRB, VRG DN15-50 к электроприводам Ридан

Описание и область применения

Адаптер предназначен для установки на клапанах VF3, VF2, VL, VRB, VRG (DN15–50) Danfoss и монтажа приводов Ридан ARV(E)-1000R для управления данными клапанами. Адаптер состоит из адаптера, удлинителя штока, гайки штока, установочных винтов.

Номенклатура и коды для оформления заказа

Тип электропривода	Тип и DN регулирующих клапанов	Кодовый номер	
ARV-1000R	VF3, VF2, VL, VRB, VRG, DN=15-50 мм	- 065Z0313R	
ARE-1000R	VF3, VF2, VL, VRB, VRG, DN=15-50 мм		

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», поготип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Техническое описание

Адаптер для присоединения клапанов HRB, HRE DN15-50 к электроприводам Ридан

Описание и область применения

Адаптер предназначен для установки на клапанах HRB, HRE (DN15–50) Danfoss и монтажа приводов Ридан AMB-162R для управления данными клапанами. Адаптер состоит из пластикового моста.

Номенклатура и коды для оформления заказа

Тип электропривода	Тип и DN регулирующих клапанов Кодовый номер	
AMB-162R	HRB, HRE, DN=15-50 мм	065Z0314R

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», поготип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Контроллеры серии ECL

Техническое описание

Контроллер ECL-3R

Описание и область применения

ECL-3R представляет собой конфигурируемый контроллер, предназначенный для использования в системах теплоснабжения зданий с централизованной подачей тепла.

ECL-3R обеспечивает управление системой отопления, включая контур подпитки, и системой горячего водоснабжения. В регулировании температуры подачи отопления используется

погодозависимая схема на основе измерений температуры наружного воздуха и температурного графика.

Новый контроллер обеспечивает управление до двух контуров и может управлять одним или двумя циркуляционными насосами и насосами подпитки. Наиболее популярный случай регулирования контура отопления и ГВС представлен в базовой версии контроллера ECL-3R 368, для регулирования двух контуров системы отопления доступна версия ECL-3R 361.

Представлено решение с функцией поддержания давления или перепада давления на насосной группе, где предусмотрено управление преобразователями частоты. Для контура ГВС доступна версия ECL-3R 317 FC, а для контура отопления — ECL-3R 331 FC. Помимо функций регулирования ECL-3R также обеспечивает сбор показаний вспомогательных датчиков температуры и давления. Значения технологических параметров отображаются на дисплее ECL-3R. Благодаря наличию двух портов RS-485, есть возможность подключения ECL-3R к системе диспетчеризации и использования локальной визуальной панели.

Функции

Линейка контроллеров ECL-3R обладает всеми функциями необходимыми для автоматизации теплового пункта.

Общие функции

- Управление импульсными и аналоговыми приводами на контурах отопления и ГВС.
- Раздельное включение контуров автоматики.
- Анализ сухого хода по дискретному или аналоговому датчику.
- Анализ перепада давления по двум аналоговым датчикам или реле перепада давления.
- Встроенные часы реального времени отображают график выходных и рабочих дней.
- Управление по расписанию составляется на основе недельной программы. Оно дает возможность выбирать дни с комфортным или ограничивающим (экономным) режимом.
- Управление до 2-х насосов с функцией ротации по расписанию.
- В версиях FC доступна возможность управления циркуляционными насосами по давлению или перепаду давления.
- Мониторинг и индикация аварий.
- Общий датчик температуры наружного воздуха на группу контроллеров.

Функции системы отопления и подпитки

- Задание отопительного графика по шести реперным точкам.
- Управление системой подпитки.
- Ограничение максимальной и минимальной температуры теплоносителя.
- Ограничение температуры возвращаемого теплоносителя.
- Автоматическое отключение отопления при повышении температуры наружного воздуха выше заданного значения.
- Корректировка температуры теплоносителя в зависимости от требуемой температуры воздуха в отапливаемом помещении.
- Поддерживается управление до 2-х насосов с функцией ротации по расписанию.
- В версиях FC доступна возможность управления циркуляционными насосами по давлению или перепаду давления.
- Возможность отключения системы отопления с переводом в аварийный режим (защита от замерзания).

Функции системы ГВС

Опциональная функция приоритета ГВС перед отоплением.

Техническое описание

Контроллер ECL-3R

Номенклатура и кодовые номера для оформления заказа

Тип	Описание	Кодовый номер
Контроллеры Е	- CCL-3R	
ECL-3R	Контроллер ECL-3R 368 для регулирования температуры в контуре отопления и ГВС, 24V DC	087H3803R
ECL-3R	Контроллер ECL-3R 361 для регулирования температуры в двух контурах отопления, 24V DC	087H3804R
ECL-3R	Контроллер ECL-3R 317 FC для регулирования температуры в контуре ГВС с функцией поддержания давления, 24V DC	087H3807R
ECL-3R	Контроллер ECL-3R 331 FC для регулирования температуры в контуре отопления с функцией поддержания давления, 24V DC	087H3805R
ECL-3R	Контроллер ECL-3R Pumps для управления насосной группой из двух насосов	087H3702R
ECL-3R	Контроллер ECL-3R MM модуль мониторинга	087H3701R
Блок питания 220/24	Блок питания для ECL 24 В 36 Вт	082X9190R
Блок питания 220/24	Блок питания для ECL 24 В 60 Вт	082X9191R
WF Connect	Адаптер RS485/WI-FI для подключения к конфигуратору	087H3860
Датчики темп	ературы, реле давления, преобразователи давления для ECL-3R	
MBT 3380R	Датчик температуры наружного воздуха (–50+95 °C)	097U1115R
MBT 400R	Датчик температуры внутреннего воздуха (–30+50 °C)	084N1025R
MBT 5250R	Датчик погружной, I = 50 мм, (–50+200 °C), нержавеющая сталь	084Z8083R
MBT 5250R	Гильза для датчика температуры MBT, 50 мм	084Z7258R
MBT 5250R	Датчик погружной, I = 100 мм, (–50+200 °C), нержавеющая сталь	084Z8139R
MBT 5250R	Гильза для датчика температуры MBT, 100 мм	084Z7259R
MBT 5250R	Датчик погружной, I = 150 мм, (–50+200 °C), нержавеющая сталь	084Z2113R
MBT 5250R	Гильза для датчика температуры MBT, 150 мм	084Z7260R
MBT 5250R	Датчик погружной, I = 200 мм, (–50+200 °C), нержавеющая сталь	084Z2257R
MBT 5250R	Гильза для датчика температуры MBT, 200 мм	084Z7261R
MBT 3381R	Датчик поверхностный, для монтажа на трубе (–60+180 °C)	097U1113R
MBT 3281R	Датчик температуры накладной (0+100 °C)	097U0113R
KPI 36R	Реле давления KPI 36R, G¼, диапазон уставок 2–14 бар, дифф. 1–4 бар	060-118966R
KPI 35R	Реле давления KPI 35R, G¼, диапазон уставок 0,2–7,5 бар, дифф. 0,7–4 бар	060-121766R
RT262R	Реле перепада давления	017D002566R
MBS1700R	MBS1700R Преобразователь давления 0–6 бар, 4–20 мА	060G6104R
MBS1700R	MBS1700R Преобразователь давления 0–10 бар, 4–20 мА	060G6105R
MBS1700R	MBS1700R Преобразователь давления 0–16 бар, 4–20 мА	060G6106R

Контроллер ECL-3R

Основные технические характеристики

Контроллер ECL-3R A368

Характеристика	Описание			
Размеры ш×в×г, мм	70×105×65			
Крепление	Ha DIN-рейку			
Дисплей и клавиатура	Монохромный дисплей с подсветкой 192×64, 6 кнопок			
Интерфейсы для сбора и передачи данных				
RS-485 №1	Скорость 2400 - 115200 бит/с			
RS-485 №2				
Часы реального времени	Срок действия 30 дней после отключения питания (аккумулятор)			
Номинальное напряжение питания	24 В пост. тока			
Диапазон допустимого напряжения	16–36 В пост. тока			
Максимальная потребляемая мощность	5 Вт			

Модуль расширения ECL-3R Triac

Характеристика	Описание	
Размеры ш×в×г, мм	70×105×65	
Крепление	Ha DIN-рейку	
Входной интерфейс		
6 низковольтных сигналов управления с общей нейтралью	Напряжение 24 В пост. тока. Ток < 50 мА	
Выходной интерфейс		
Две гальванически изолированные группы высоковольтных сигналов	Группа 1: 2 шт. Группа 2: 4 шт.	
Номинальное напряжение	220 В перем. тока	
Максимальный ток нагрузки	2 A	

Конфигурационные профили контроллера ECL-3R 368

Контроллер ECL-3R 368 поставляется с шестью предустановленными заводскими профилями конфигурационных настроек. Конфигурационные профили характеризуются индивидуальным распределением технологических сигналов на входах-выходах контроллера. Типы сигналов на одних и тех же клеммных выходах контроллера для разных профилей могут различаться.

Наличие нескольких предустановленных конфигурационных профилей позволяет использовать ECL-3R 368 для автоматизации тепловых пунктов в широком диапазоне исполнений по типу управления приводами

регулирующих клапанов и набору защитных и информационных датчиков. В некоторых профилях присутствуют входы для свободно назначаемых датчиков, обозначенные по их типам как «Резерв 4–20 мА» и «Резерв Рt1000». Профили соответствуют максимальным конфигурациям подключаемого оборудования. При настройке контроллера выбранный профиль подлежит дополнительному редактированию в интерфейсе контроллера или утилиты-конфигуратора для выбора фактически используемых датчиков, задания типа управления приводами, настройки функций, аварий, технологических уставок, калибровки датчиков.

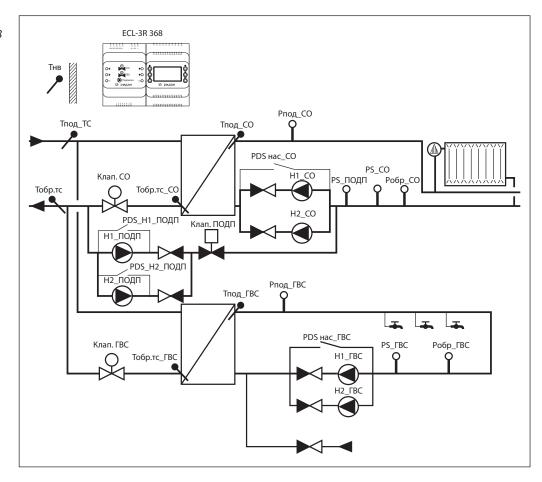
	Тип электрического привода	Тип датчиков для анализа аварий на насосной группе	Особенность конфигурации
Конфигурация №1	«Импульсный 220 В или Аналоговый (0–10 В)»	PE — аналоговые MBS1700R (4–20 мA); PS — дискретные КРІ (DI 0B); PDS — дискретные RT262R (DI 0B)	— общая прошивка со всеми типами датчиков для анализа аварий на насосной группе; — два типа приводов
Конфигурация №2	Импульсный 220 B	PS — дискретные KPI (DI 0B); PDS — дискретные RT262R (DI 0B)	— предусмотрены резервные датчики температуры и давления; — есть обратная связь с импульсных приводов с концевых выключателей
Конфигурация №3	Импульсный 220 B	PS — дискретные КРІ (DI 0B); PDS — дискретные RT262R (DI 0B)	— предусмотрены дополнительные входы, куда можно подключить сигнал аварии с преобразователя частоты; — есть резервные датчики температуры и давления
Конфигурация №4	Импульсный 220 B	PE — аналоговые MBS1700R (4–20 мА)	— есть обратная связь с им- пульсных приводов с концевых выключателей; — предусмотрены резервные датчики температуры
Конфигурация №5	Аналоговый (0–10 B)	PS — дискретные КРІ (DI 0B); PDS — дискретные RT262R (DI 0B)	— предусмотрены резервные датчики температуры и давления; — обратная связь о текущем положение штока привода; — предусмотрен внешний сигнал критической аварии для остановки всей автоматики контроллера
Конфигурация №6	Аналоговый (0–10 B)	PE — аналоговые MBS1700R (4–20 мА)	— предусмотрены резервные датчики температуры; — обратная связь о текущем положение штока привода; — предусмотрен внешний сигнал критической аварии для остановки всей автоматики контроллера

ECL Select — онлайн программа для подбора контроллеров. Заполните короткий опросный лист и вам подберется гарантированно правильное решение.

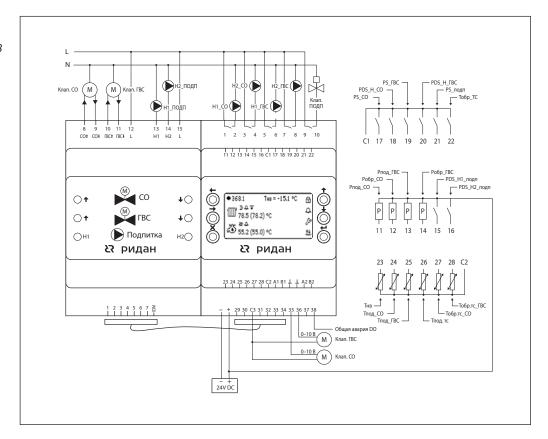
Сравнительные таблицы — для того чтобы легко ориентироваться в контролерах, все актуальные линейки/версии контроллеров, их функции и описание собрали в одном месте.

Конфигуратор

Специалисты компании «Ридан» разработали приложение (конфигуратор) для настройки контроллеров серии ECL-3R, которое не только экономит время пусконаладочных работ, но и упрощает сам процесс.

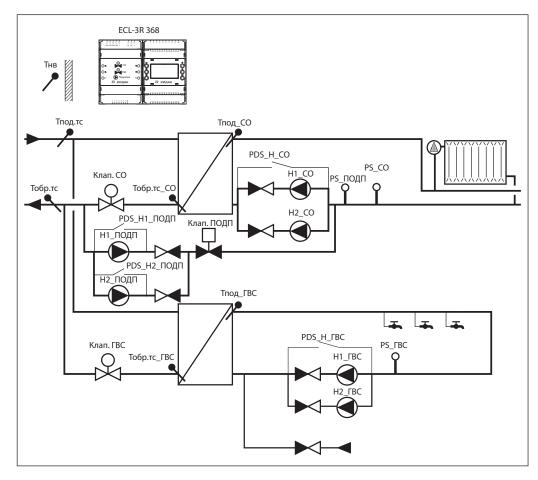

Функции и особенности работы конфигуратора:

- готовый пошаговый алгоритм обязательных настроек, который сэкономит время работы монтажника. Его можно создавать удаленно без привязки к месту размещения оборудования;
- экспорт/импорт настроек контроллера. Это позволяет сохранять резервную версию для типовых настроек под проект или реплицировать шаблон настроек на разных ИТП;
- построение графиков в режиме реального времени;
- удобное подключение через Wi-Fi для настройки всех контроллеров из одной сети;
- автоматическая идентификация моделей и версий контроллеров, если в системе используется несколько приборов.

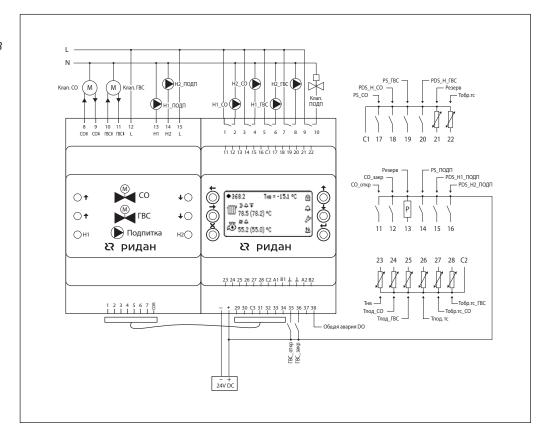


Применение ECL-3R 368 (для версии контроллера 1.18 конфигурация 1)

Схема электрических подключений ECL-3R 368 (для версии контроллера 1.18 конфигурация 1)

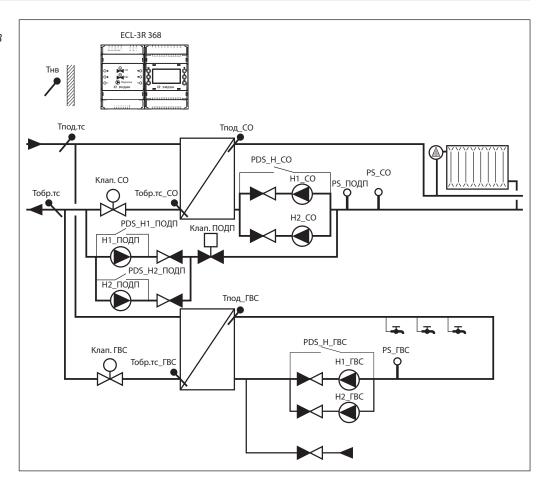


Конфигурация входов/ выходов ECL-3R 368 и дополнительного модуля ECL-3R Triac (для версии контроллера 1.18 конфигурация 1)

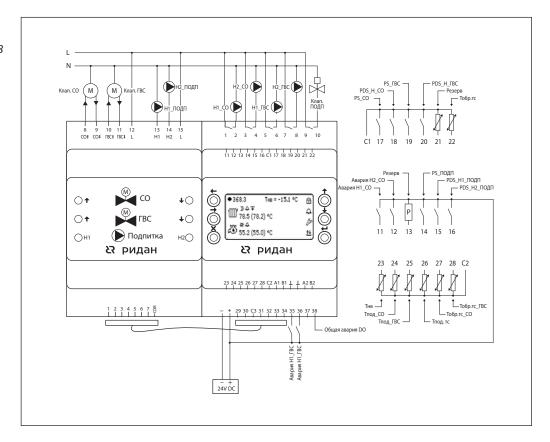

Ю	Обозначение на схеме	Тип сигнала	Обозначение в контроллере	Описание
2	H1_CO		Включить Н1 СО	Сигнал на запуск насоса 1 СО
4	H2_CO		Включить Н2 СО	Сигнал на запуск насоса 2 СО
6	Н1_ГВС	Э/м реле (220 В 3 А)	Включить Н1 ГВС	Сигнал на запуск насоса 1 ГВС
8	Н2_ГВС		Включить Н2 ГВС	Сигнал на запуск насоса 2 ГВС
10	Клап_ПОДП		Включить подпитку	Сигнал на открытие клапана ПОДП
11	Рпод_СО		Давление подачи СО	Давление подачи СО
12	Робр_СО	4–20 MA	Давление обратки СО	Давление обратки СО
13	Рпод_ГВС	4-20 MA	Давление подачи ГВС	Давление подачи ГВС
14	Робр_ГВС		Давление обратки ГВС	Давление обратки ГВС
15	PDS_H1_ПОДП	DI 24 В пост. тока	Перепад Н1_ПОДП	Перепад давления на насосе 1 ПОДП
16	PDS_H2_ПОДП	(30 В макс)	Перепад Н2_ПОДП	Перепад давления на насосе 2 ПОДП
17	PS_CO		Наличие воды Н_СО	Наличие воды на входе насосов СО
18	PDS_H_CO		Перепад давления Н_СО	Перепад давления на насосах СО
19	PS_FBC	DIOB	Наличие воды Н_ГВС	Наличие воды на входе насосов ГВС
20	PDS_H_FBC		Перепад давления Н_ГВС	Перепад давления на насосах ГВС
21	PS_ПОДП		Включить подпитку	Требование на включение подпитки
22	Тобр.тс		Темп. обр. тс	Температура обратки теплосети
23	Тнв		Темп. наружного воздуха	Температура наружного воздуха
24	Тпод_СО		Темп. подачи СО	Температура подачи СО
25	Тпод_ГВС		Темп. подачи ГВС	Температура подачи ГВС
26	Тпод.тс	Pt1000	Темп. подачи теплосети	Температура подачи теплосети
27	Тобр.тс_СО		Темп. обр.тс_СО	Температура обратки тс после TO CO
28	Тобр.тс_ГВС		Темп.обр.тс_ГВС	Температура обратки тс после ТО ГВС
29	Н1_ПОДП		Включить насос 1 ПОДП	Сигнал на включение насоса 1 ПОДП
30	Н2_ПОДП	DO на ECL-3R Triac	Включить насос 2 ПОДП	Сигнал на включение насоса 2 ПОДП
31	Клап_СО+	(24 B 50 MA	Открыть клапан СО	Сигнал на открытие клапана СО
32	Клап_СО-	/220 B 2 A)	Закрыть клапан СО	Сигнал на закрытие клапана СО
33	Клап_ГВС+		Открыть клапан ГВС	Сигнал на открытие клапана ГВС
34	Клап_ГВС-		Закрыть клапан ГВС	Сигнал на закрытие клапана ГВС
35	Клап_СО		Клапан СО (0–10 В)	Управляющий сигнал на клапан СО
36	Клап_ГВС	AO 0-10 B	Клапан ГВС (0–10 В)	Управляющий сигнал на клапан ГВС
37				
38	Авария	DO 24 B	Общая авария	Общая авария

Применение ECL-3R 368 (для версии контроллера 1.18 конфигурация 2)

Схема электрических подключений ECL-3R 368 (для версии контроллера 1.18 конфигурация 2)

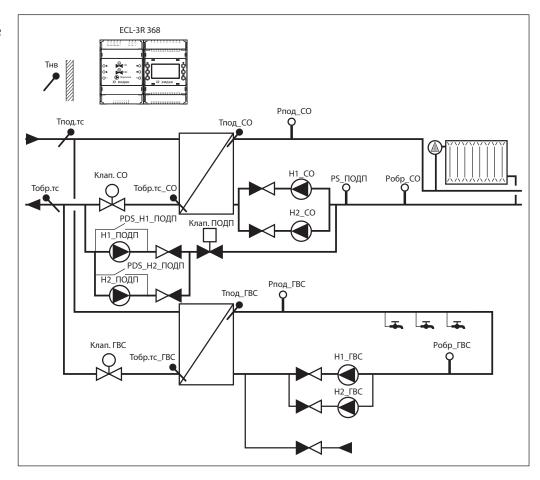


Конфигурация входов/ выходов ECL-3R 368 и дополнительного модуля ECL-3R Triac (для версии контроллера 1.18 конфигурация 2)

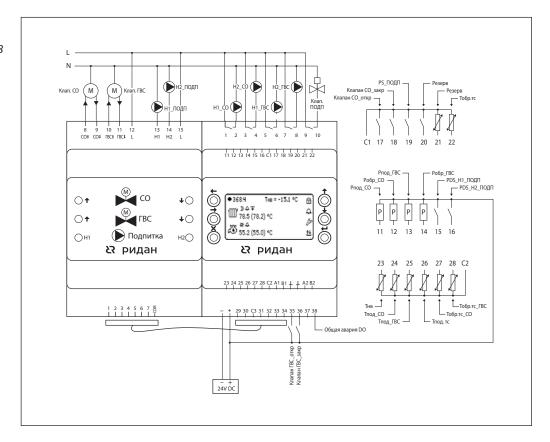

Ю	Обозначение на схеме	Тип сигнала	Обозначение в контроллере	Описание
2	H1_CO		Включить H1 CO	Сигнал на запуск насоса 1 СО
4	H2_CO		Включить Н2 СО	Сигнал на запуск насоса 2 СО
6	Н1_ГВС	Э/м реле (220 B 3 A)	Включить Н1 ГВС	Сигнал на запуск насоса 1 ГВС
8	Н2_ГВС		Включить Н2 ГВС	Сигнал на запуск насоса 2 ГВС
10	Клап_ПОДП		Включить подпитку	Сигнал на открытие клапана ПОДП
11	Клап_СО_откр	DI 24 B	Клапан СО открыт	Сигнал обратной связи клапан CO открыт
12	Клап_СО_закр	DI 24 B	Клапан СО закрыт	Сигнал обратной связи клапан CO закрыт
13	Резерв	4–20 мА	Мониторинг 4–20 мА	Резервный сигнал под мониторинг
14	PS_ПОДП	DI 24 B	Включить подпитку	Требование на включение подпитки
15	PDS_H1_ПОДП	DI 24 В пост. тока	Перепад давления Н1_ПОДП	
16	PDS_H2_ПОДП	(30 В макс)	Перепад давления H2_ПОДП	
17	PS_CO		Наличие воды Н_СО	Наличие воды на входе насосов СО
18	PDS_H_CO		Перепад давления Н_СО	Перепад давления на насосах СО
19	PS_FBC	DIOB	Наличие воды Н_ГВС	Наличие воды на входе насосов ГВС
20	PDS_H_FBC		Перепад давления Н_ГВС	Перепад давления на насосах ГВС
21	Резерв		Мониторинг	Резервный вход Pt1000
22	Тобр.тс		Темп. обр. тс	Температура обратки теплосети
23	Тнв		Темп. наружного воздуха	Температура наружного воздуха
24	Тпод_СО		Темп. подачи СО	Температура подачи СО
25	Тпод_ГВС	Pt1000	Темп. подачи ГВС	Температура подачи ГВС
26	Тпод.тс		Темп. подачи теплосети	Температура подачи теплосети
27	Тобр.тс_СО		Темп. обр.тс_СО	Температура обратки тс после TO CO
28	Тобр.тс_ГВС		Темп.обр.тс_ГВС	Температура обратки тс после ТО ГВС
29	н1_подп		Включить насос 1 ПОДП	Сигнал на включение насоса 1 ПОДП
30	Н2_ПОДП	DO на ECL-3R Triac	Включить насос 2 ПОДП	Сигнал на включение насоса 2 ПОДП
31	Клап_СО+	(24 B 50 mA /220 B 2 A)	Открыть клапан СО	Сигнал на открытие клапана СО
32	Клап_СО-	/220 D Z N)	Закрыть клапан СО	Сигнал на закрытие клапана СО
33	Клап_ГВС+		Открыть клапан ГВС	Сигнал на открытие клапана ГВС
34	Клап_ГВС-		Закрыть клапан ГВС	Сигнал на закрытие клапана ГВС
35	Клап_ГВС_откр	DI 24 В пост. тока	Клапан ГВС открыт	Сигнал обратной связи клапан ГВС открыт
36	Клап_ГВС_закр	(30 В макс)	Клапан ГВС закрыт	Сигнал обратной связи клапан ГВС закрыт
37				
38	Авария	DO 24 B	Общая авария	Общая авария

Применение ECL-3R 368 (для версии контроллера 1.18 конфигурация 3)

Схема электрических подключений ECL-3R 368 (для версии контроллера 1.18 конфигурация 3)

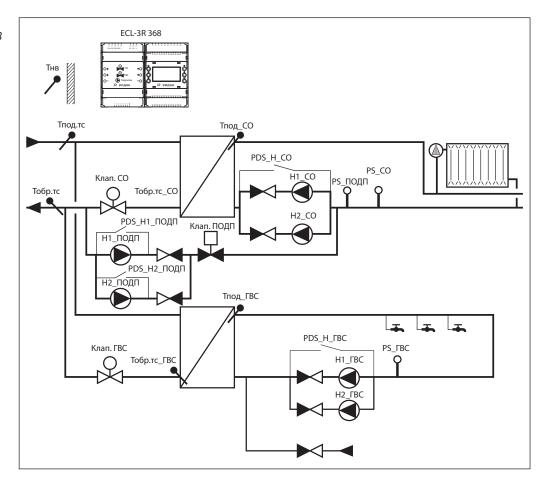

Контроллер ECL-3R

Конфигурация входов/ выходов ECL-3R 368 и дополнительного модуля ECL-3R Triac (для версии контроллера 1.18 конфигурация 3)

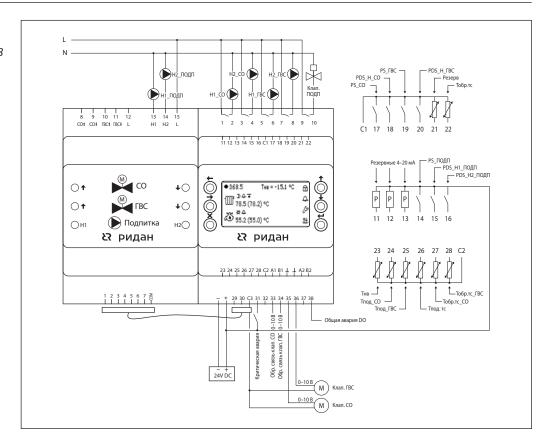

ю	Обозначение на схеме	Тип сигнала	Обозначение в контроллере	Описание
2	H1_CO		Включить H1 CO	Сигнал на запуск насоса 1 СО
4	H2_CO		Включить Н2 СО	Сигнал на запуск насоса 2 СО
6	Н1_ГВС	Э/м реле (220 B 3 A)	Включить Н1 ГВС	Сигнал на запуск насоса 1 ГВС
8	Н2_ГВС		Включить Н2 ГВС	Сигнал на запуск насоса 2 ГВС
10	Клап_ПОДП		Включить подпитку	Сигнал на открытие клапана ПОДП
11	Авария Н1_СО	DI 24 B	Авария насоса 1 СО	Авария насоса 1 СО
12	Авария Н2_СО	DI 24 B	Авария насоса 2 СО	Авария насоса 2 СО
13	Резерв	4-20 мА	Мониторинг 4-20 мА	Резервный сигнал под мониторинг
14	PS_ПОДП	DI 24 B	Включить подпитку	Требование на включение подпитки
15	PDS_H1_ПОДП	DI 24 В пост. тока	Перепад давления Н1_ПОДП	
16	PDS_H2_ПОДП	(30 В макс)	Перепад давления H2_ПОДП	
17	PS_CO		Наличие воды Н_СО	Наличие воды на входе насосов СО
18	PDS_H_CO		Перепад давления Н_СО	Перепад давления на насосах СО
19	PS_FBC	DI 0 B	Наличие воды Н_ГВС	Наличие воды на входе насосов ГВС
20	PDS_H_FBC		Перепад давления Н_ГВС	Перепад давления на насосах ГВС
21	Резерв		Мониторинг	Резервный вход Pt1000
22	Тобр.тс		Темп. обр. тс	Температура обратки теплосети
23	Тнв		Темп. наружного воздуха	Температура наружного воздуха
24	Тпод_СО		Темп. подачи СО	Температура подачи СО
25	Тпод_ГВС	Pt1000	Темп. подачи ГВС	Температура подачи ГВС
26	Тпод.тс	1 11000	Темп. подачи теплосети	Температура подачи теплосети
27	Тобр.тс_СО		Темп. обр.тс_СО	Температура обратки тс после ТО СО
28	Тобр.тс_ГВС		Темп.обр.тс_ГВС	Температура обратки тс после ТО ГВС
29	н1_подп		Включить насос 1 ПОДП	Сигнал на включение насоса 1 ПОДП
30	Н2_ПОДП	DO на ECL-3R Triac	Включить насос 2 ПОДП	Сигнал на включение насоса 2 ПОДП
31	Клап_СО+	(24 B 50 MA	Открыть клапан СО	Сигнал на открытие клапана СО
32	Клап_СО-	/220 B 2 A)	Закрыть клапан СО	Сигнал на закрытие клапана СО
33	Клап_ГВС+		Открыть клапан ГВС	Сигнал на открытие клапана ГВС
34	Клап_ГВС-		Закрыть клапан ГВС	Сигнал на закрытие клапана ГВС
35	Авария Н1_ГВС	DI 24 В пост. тока	Авария насоса 1 ГВС	Авария насоса 1 ГВС
36	Авария Н2_ГВС	(30 В макс)	Авария насоса 2 ГВС	Авария насоса 2 ГВС
37				
38	Авария	DO 24 B	Общая авария	Общая авария

Применение ECL-3R 368 (для версии контроллера 1.18 конфигурация 4)

Схема электрических подключений ECL-3R 368 (для версии контроллера 1.18 конфигурация 4)

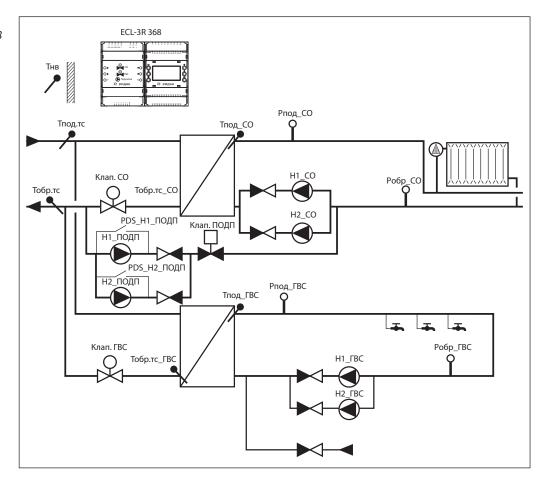


Конфигурация входов/ выходов ECL-3R 368 и дополнительного модуля ECL-3R Triac (для версии контроллера 1.18 конфигурация 4)

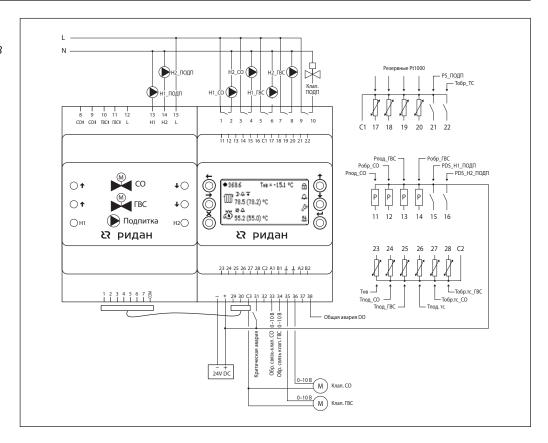

10	Обозначение на схеме	Тип сигнала	Обозначение в контроллере	Описание
2	H1_CO		Включить Н1 СО	Сигнал на запуск насоса 1 СО
4	H2_CO		Включить H2 CO	Сигнал на запуск насоса 2 СО
6	Н1_ГВС	Э/м реле (220 B 3 A)	Включить Н1 ГВС	Сигнал на запуск насоса 1 ГВС
8	Н2_ГВС		Включить Н2 ГВС	Сигнал на запуск насоса 2 ГВС
10	Клап_ПОДП		Включить подпитку	Сигнал на открытие клапана ПОДП
11	Рпод_СО		Давление подачи СО	Давление подачи СО
12	Робр_СО	4–20 MA	Давление обратки СО	Давление обратки СО
13	Рпод_ГВС	4-20 MA	Давление подачи ГВС	Давление подачи ГВС
14	Робр_ГВС		Давление обратки ГВС	Давление обратки ГВС
15	PDS_H1_ПОДП	DI 24 В пост. тока	Перепад Н1_ПОДП	Перепад давления на насосе 1 ПОДП
16	PDS_H2_ПОДП	(30 В макс)	Перепад Н2_ПОДП	Перепад давления на насосе 2 ПОДП
17	Клап_СО_откр		Клапан СО открыт	Сигнал концевика клапан СО открыт
18	Клап_СО_закр	DIOB	Клапан СО закрыт	Сигнал концевика клапан СО закрыт
19	PS_ПОДП		Включить подпитку	Требование на включение подпитки
20	Резерв		Мониторинг	Резервный вход Pt1000
21	Резерв		Мониторинг	Резервный вход Pt1000
22	Тобр.тс		Темп. обр. тс	Температура обратки теплосети
23	Тнв		Темп. наружного воздуха	Температура наружного воздуха
24	Тпод_СО		Темп. подачи СО	Температура подачи СО
25	Тпод_ГВС	Pt1000	Темп. подачи ГВС	Температура подачи ГВС
26	Тпод.тс		Темп. подачи теплосети	Температура подачи теплосети
27	Тобр.тс_СО		Темп. обр.тс_СО	Температура обратки тс после ТО СО
28	Тобр.тс_ГВС		Темп.обр.тс_ГВС	Температура обратки тс после ТО ГВС
29	Н1_ПОДП		Включить насос 1 ПОДП	Сигнал на включение насоса 1 ПОДП
30	Н2_ПОДП	DO на ECL-3R Triac	Включить насос 2 ПОДП	Сигнал на включение насоса 2 ПОДП
31	Клап_СО+	(24 B 50 mA /220 B 2 A)	Открыть клапан СО	Сигнал на открытие клапана СО
32	Клап_СО-	/220 B 2 A)	Закрыть клапан СО	Сигнал на закрытие клапана СО
33	Клап_ГВС+		Открыть клапан ГВС	Сигнал на открытие клапана ГВС
34	Клап_ГВС–		Закрыть клапан ГВС	Сигнал на закрытие клапана ГВС
35	Клап_ГВС откр	DI 24 В пост. тока	Клапан ГВС открыт	Сигнал концевика клапан ГВС открыт
36	Клап_ГВС закр	Di 24 di NOCI. TOKA	Клапан ГВС закрыт	Сигнал концевика клапан ГВС закрыт
37				
38	Авария	DO 24 B	Общая авария	Общая авария

Применение ECL-3R 368 (для версии контроллера 1.18 конфигурация 5)

Схема электрических подключений ECL-3R 368 (для версии контроллера 1.18 конфигурация 5)

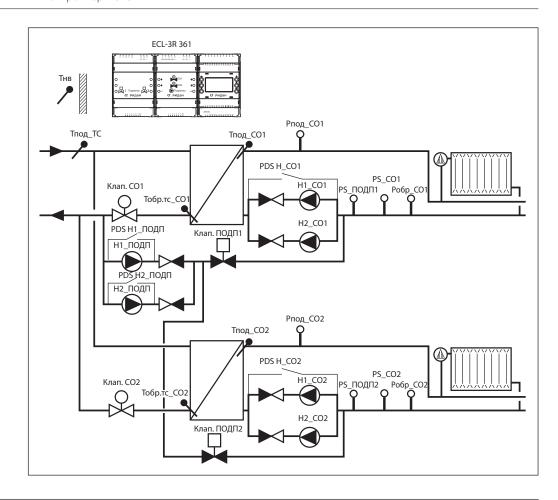


Конфигурация входов/ выходов ECL-3R 368 и дополнительного модуля ECL-3R Triac (для версии контроллера 1.18 конфигурация 5)

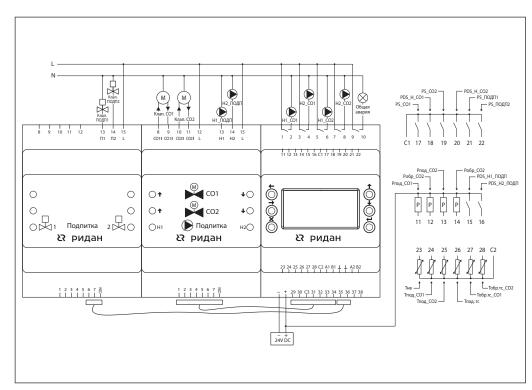

Ю	Обозначение на схеме	Тип сигнала	Обозначение в контроллере	Описание
2	H1_CO		Включить Н1 СО	Сигнал на запуск насоса 1 СО
4	H2_CO		Включить Н2 СО	Сигнал на запуск насоса 2 СО
6	Н1_ГВС	Э/м реле (220 B 3 A)	Включить Н1 ГВС	Сигнал на запуск насоса 1 ГВС
8	Н2_ГВС		Включить Н2 ГВС	Сигнал на запуск насоса 2 ГВС
10	Клап_ПОДП		Включить подпитку	Сигнал на открытие клапана ПОДП
11	Резерв		Резерв 4–20 мА	Сигнал под мониторинг 4–20 мА
12	Резерв	4–20 мА	Резерв 4–20 мА	Сигнал под мониторинг 4–20 мА
13	Резерв		Резерв 4–20 мА	Сигнал под мониторинг 4–20 мА
14	PS_ПОДП		Включить подпитку	Требование на включение подпитки
15	PDS_H1_ПОДП	DI 24 В пост. тока (30 В макс)	Перепад Н1_ПОДП	Перепад давления на насосе 1 ПОДП
16	PDS_H2_ПОДП		Перепад Н2_ПОДП	Перепад давления на насосе 2 ПОДП
17	PS_CO		Наличие воды Н_СО	Наличие воды на входе насосов СО
18	PDS_H_CO		Перепад давления Н_СО	Перепад давления на насосах СО
19	PS_FBC	DI 0 B	Наличие воды Н_ГВС	Наличие воды на входе насосов ГВС
20	PDS_H_FBC		Перепад давления Н_ГВС	Перепад давления на насосах ГВС
21	Резерв		Мониторинг	Резервный вход Pt1000
22	Тобр.тс		Темп. обр. тс	Температура обратки теплосети
23	Тнв		Темп. наружного воздуха	Температура наружного воздуха
24	Тпод_СО		Темп. подачи СО	Температура подачи СО
25	Тпод_ГВС	Pt1000	Темп. подачи ГВС	Температура подачи ГВС
26	Тпод.тс		Темп. подачи теплосети	Температура подачи теплосети
27	Тобр.тс_СО		Темп. обр.тс_СО	Температура обратки тс после ТО СО
28	Тобр.тс_ГВС		Темп.обр.тс_ГВС	Температура обратки тс после ТО ГВС
29	Н1_ПОДП	DO на ECL-3R Triac (24 В 50 мА	Включить насос 1 ПОДП	Сигнал на включение насоса 1 ПОДП
30	Н2_ПОДП	/220 B 2 A)	Включить насос 2 ПОДП	Сигнал на включение насоса 2 ПОДП
31	Авария		Критическая авария (DI)	Сигнал критической аварии
32				
33	Клап_СО_обр. связь	AI 0-10 B	Отклик клапана СО	Сигнал обратной связи с клапана СО
34	Клап_ГВС_обр. связь	AI 0-10 B	Отклик клапана ГВС	Сигнал обратной связи с клапана ГВС
35	Клап_СО		Клапан СО (0–10 В)	Управляющий сигнал на клапан СО
36	Клап_ГВС	AO 0-10 B	Клапан ГВС (0–10 В)	Управляющий сигнал на клапан ГВС
37				
38	Авария	DO 24 B	Общая авария	Общая авария

Применение ECL-3R 368 (для версии контроллера 1.18 конфигурация 6)

Схема электрических подключений ECL-3R 368 (для версии контроллера 1.18 конфигурация 6)

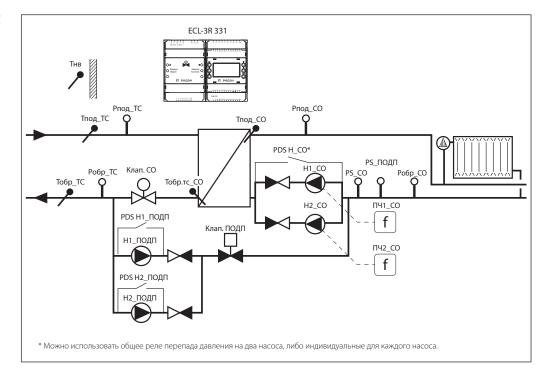


Конфигурация входов/ выходов ECL-3R 368 и дополнительного модуля ECL-3R Triac (для версии контроллера 1.18 конфигурация 6)

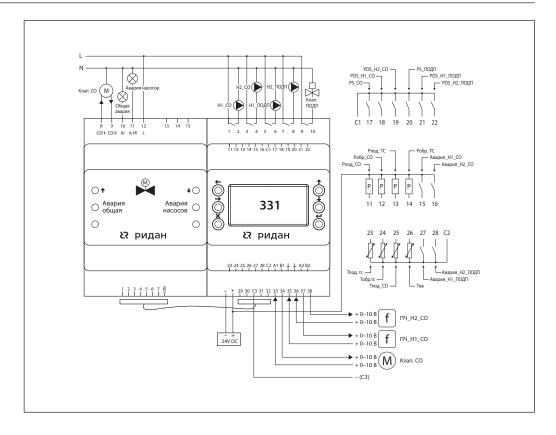

Ю	Обозначение на схеме	Тип сигнала	Обозначение в контроллере	Описание
2	H1_CO		Включить Н1 СО	Сигнал на запуск насоса 1 СО
4	H2_CO		Включить Н2 СО	Сигнал на запуск насоса 2 СО
6	Н1_ГВС	Э/м реле (220 В 3 А)	Включить Н1 ГВС	Сигнал на запуск насоса 1 ГВС
8	Н2_ГВС		Включить Н2 ГВС	Сигнал на запуск насоса 2 ГВС
10	Клап_ПОДП		Включить подпитку	Сигнал на открытие клапана ПОДП
11	Рпод_СО		Давление подачи СО	Давление подачи СО
12	Робр_СО	4 204	Давление обратки СО	Давление обратки СО
13	Рпод_ГВС	4–20 мА	Давление подачи ГВС	Давление подачи ГВС
14	Робр_ГВС		Давление обратки ГВС	Давление обратки ГВС
15	PDS_H1_ПОДП	DI 24 В пост. тока	Перепад Н1_ПОДП	Перепад давления на насосе 1 ПОДП
16	PDS_H2_ПОДП	(30 В макс)	Перепад Н2_ПОДП	Перепад давления на насосе 2 ПОДП
17	Резерв		Резерв Pt1000	Резервный сигнал под мониторинг Pt1000
18	Резерв	Pt1000	Резерв Pt1000	Резервный сигнал под мониторинг Pt1000
19	Резерв	711000	Резерв Pt1000	Резервный сигнал под мониторинг Pt1000
20	Резерв		Резерв Pt1000	Резервный сигнал под мониторинг Pt1000
21	PS_ПОДП	DIOB	Включить подпитку	Требование на включение подпитки
22	Тобр.тс		Темп. обр. тс	Температура обратки теплосети
23	Тнв		Темп. наружного воздуха	Температура наружного воздуха
24	Тпод_СО		Темп. подачи СО	Температура подачи СО
25	Тпод_ГВС		Темп. подачи ГВС	Температура подачи ГВС
26	Тпод.тс	Pt1000	Темп. подачи теплосети	Температура подачи теплосети
27	Тобр.тс_СО		Темп. обр.тс_СО	Температура обратки тс после ТО СО
28	Тобр.тс_ГВС		Темп.обр.тс_ГВС	Температура обратки тс после ТО ГВС
29	н1_подп	DO на ECL-3R Triac	Включить насос 1 ПОДП	Сигнал на включение насоса 1 ПОДП
30	Н2_ПОДП	(24 B 50 MA /220 B 2 A)	Включить насос 2 ПОДП	Сигнал на включение насоса 2 ПОДП
31	Авария		Критическая авария (DI)	Сигнал критической аварии
32				
33	Клап_СО_обр. связь	AI 0-10 B	Отклик клапана СО	Сигнал обратной связи с клапана СО
34	Клап_ГВС_обр. связь	AI 0-10 B	Отклик клапана ГВС	Сигнал обратной связи с клапана ГВС
35	Клап_СО		Клапан СО (0–10 В)	Управляющий сигнал на клапан СО
36	Клап_ГВС	AO 0-10 B	Клапан ГВС (0–10 В)	Управляющий сигнал на клапан ГВС
37				
38	Авария	DO 24 B	Общая авария	Общая авария

Применение ECL-3R 361

Схема электрических подключений ECL-3R 361


Конфигурация входов/ выходов ECL-3R 361 и дополнительного модуля ECL-3R Triac

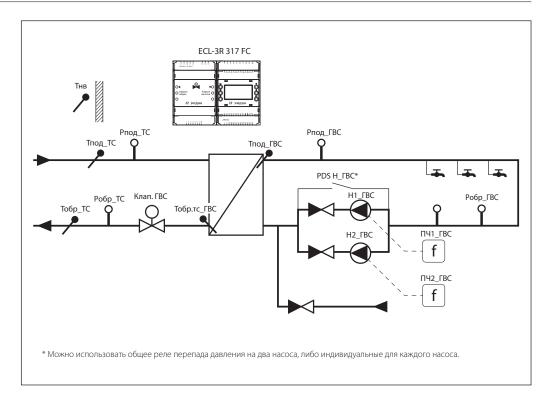
ю	Обозначение на схеме	Тип сигнала	Обозначение в контроллере	Описание
2	H1_CO1		Включить Н1 СО1	Сигнал на запуск насоса 1 СО1
4	H2_CO1	э/м реле	Включить Н2 СО1	Сигнал на запуск насоса 2 СО1
6	H1_CO2	(220 B 3 A)	Включить H1 CO2	Сигнал на запуск насоса 1 СО2
8	H2_CO2		Включить H2 CO2	Сигнал на запуск насоса 2 СО2
10	Общая авария		Общая авария	Общая авария
11	Рпод_СО1		Давление подачи СО1	Давление подачи СО1
12	Робр_СО1	4–20 MA	Давление обратки СО1	Давление обратки СО1
13	Рпод_СО2	4-20 MA	Давление подачи СО2	Давление подачи СО2
14	Робр_СО2		Давление обратки СО2	Давление обратки СО2
15	PDS_H1_ПОДП	DI 24 В пост.	Перепад Н1_ПОДП	Перепад давления на Н1 ПОДП
16	PDS_H2_ПОДП	тока (30 В макс)	Перепад Н2_ПОДП	Перепад давления на Н2 ПОДП
17	PS_CO1		Наличие воды Н_СО1	Наличие воды на входе насосов СО1
18	PDS_H_CO1		Перепад давления Н_СО1	Перепад давления на насосах СО1
19	PS_CO2	DLOD	Наличие воды Н_СО2	Наличие воды на входе насосов CO2
20	PDS_H_CO2	DI 0B	Перепад давления Н_СО2	Перепад давления на насосах СО2
21	PS_ПОДП1		Включить подпитку СО1	Требование на включение ПОДП СО1
22	PS_ПОДП2		Включить подпитку СО2	Требование на включение ПОДП СО2
23	Тнв		Темп. наружного воздуха	Температура наружного воздуха
24	Тпод_СО1		Темп. подачи СО1	Температура подачи СО1
25	Тпод_СО2		Темп. подачи СО2	Температура подачи СО2
26	Тпод.тс	Pt1000	Темп. подачи теплосети	Температура подачи теплосети
27	Тобр.тс_СО1		Темп. обр.тс_СО1	Температура обратки тс после ТО СО1
28	Тобр.тс_СО2		Темп.обр.тс_СО2	Температура обратки тс после ТО CO2
29	н1_подп		Включить насос 1 ПОДП	Сигнал на включение насоса 1 ПОДП
30	Н2_ПОДП		Включить насос 2 ПОДП	Сигнал на включение насоса 2 ПОДП
31	Клап_СО1+	DO	Открыть клапан СО1	Сигнал на открытие клапана СО1
32	Клап_СО1-	на ECL-3R Triac	Закрыть клапан СО1	Сигнал на закрытие клапана СО2
33	Клап_СО2+	(24 В 50 мА/	Открыть клапан СО2	Сигнал на открытие клапана СО2
34	Клап_СО2-	220 B 2 A)	Закрыть клапан СО2	Сигнал на закрытие клапана СО2
35	Клап. ПОДП1		Открыть клапан ПОДП1	Сигнал на открытие клапана ПОДП1
36	Клап. ПОДП2		Открыть клапан ПОДП2	Сигнал на открытие клапана ПОДП2
37	-	-	-	-
38	-	-	-	-


Входы/выходы ECL-3R А361 преднастроены на определенные типы сигналов — Pt1000 для датчиков температуры и 4–20 мА для датчиков давления. Часть дискретных входов является беспотенциальными (17–22), часть требует включения в цепь источника напряжения 24 В пост. тока (15–16). Выходы 1–10 представлены пятью электромагнитными реле 220 В/3 А. Выходы 29–36 — транзисторные (24 В/50 мА), для их коммутации на высоковольтные цепи предусмотрены комплектные модули ECL-3R Triac с твердотельными выходами 220 В/2 А. Электрическая схема рекомендуемого подключения датчиков и исполнительных устройств к контроллеру с модулем расширения приводится в Приложении №1.

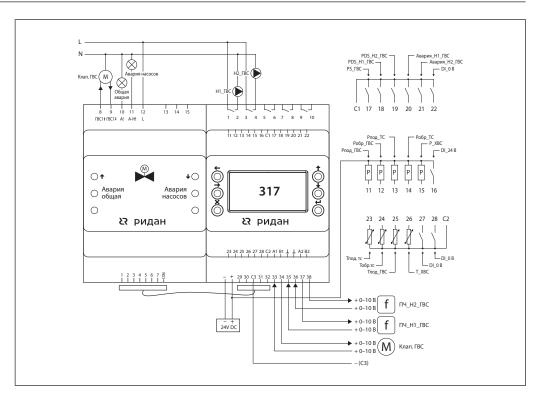
Применение ECL-3R 331 FC

Схема электрических подключений ECL-3R 331 FC

Конфигурация входов/ выходов ECL-3R 331 FC и дополнительного модуля ECL-3R Triac


Ю	Обозначение на схеме	Тип штатного сигнала	Тип сигна- ла монито- ринга	Обозначение в контроллере	Описание
2	H1_CO		-	Включить Н (ПЧ) 1 СО	Сигнал на запуск насоса (ПЧ) 1 СО
4	H2_CO			Включить Н (ПЧ) 2 СО	Сигнал на запуск насоса (ПЧ) 2 СО
6	н1_подп	Э/м реле	Нет	Включить Н1_ПОДП	Сигнал на включение насоса 1 ПОДП
8	н2_подп	(220 B 3 A)		Включить Н2_ПОДП	Сигнал на включение насоса 2 ПОДП
10	Клап_ПОДП			Открыть клапан ПОДП	Сигнал на открытие клапана ПОДП
11	Рпод_СО		51015	Давл. подачи СО, бар	Давление подачи СО
12	Робр_СО	4–20 мА		Давл. обратки СО, бар	Давление обратки СО
13	Рпод.тс	4-20 WA	DI 24 B AI 0-10 B	Давл. под.тс, бар	Давление подачи теплосети
14	Робр.тс		AI 4–20 MA	Давл. обр.тс, бар	Давление обратки теплосети
15	Авария Н1_СО	DI 24 B		Авария Н(ПЧ) 1 СО	Авария насоса 1 СО
16	Авария Н2_СО	DI 24 D		Авария Н(ПЧ) 2 СО	Авария насоса 2 СО
17	PS_CO		DI 0 B Pt1000	Наличие воды Н_СО	Наличие воды на входе насосов СО
18	PDS_H1_CO			Перепад давл. Н1_СО	Перепад давления на первом насосе CO, или общий
19	PDS_H2_CO	DIOB		Перепад давл. Н2_СО	Перепад давления на втором насосе CO
20	PS_ПОДП	ыов		Включить подпитку	Дискр. сигнал на включение ПОДП
21	PDS_H1_ПОДП			Перепад Н1_ПОДП	Перепад давления на первом насосе ПОДП, или общий
22	PDS_H2_ПОДП			Перепад Н2_ПОДП	Перепад давления на втором насосе ПОДП
23	Тпод.тс			Темп. под.тс, °С	Температура подачи теплосети
24	Тобр.тс_СО	D#1000		Темп. обр.тс_СО, °С	Температура обратки теплосети после CO
25	Тпод_СО	Pt1000		Темп. подачи СО, °С	Температура подачи СО
26	Тнв		DI 0 B Pt1000	Темп. наруж. воздуха, °С	Температура наружного воздуха
27	Авария Н1_ПОДП	DIOB		Авария Н1_ПОДП	Авария насоса 1 подпитки
28	Авария Н2_ПОДП	DI 0 В		Авария Н2_ПОДП	Авария насоса 2 подпитки
29	Общая авария	DO на ECL-	Нет	Общая авария	Сигнал наличия любой аварии
30	Авария Насосов	3R Triac (24 B 50		Авария насосов СО	Сигнал аварии на любом насосе СО
31	Клап_СО+	мА/220 В		Открыть клапан СО	Сигнал на открытие клапана СО
32	Клап_СО-	2 A)		Закрыть клапан СО	Сигнал на закрытие клапана СО
33	Клап_CO AI	AI 0-10 B	DI 24 B AI 0–10 B	Отклик клап. СО, В	Сигнал обратной связи от клапана СО
34	Клап_СО АО	AO 0-10 B		Задание клап. СО, В	Управляющий сигнал на клапан СО
35	ПЧ Н1 СО АІ	AI 0-10 B		Отклик ПЧ1 СО, В	Сигнал обратной связи от ПЧ Н1 CO
36	ПЧ Н2 СО АІ			Отклик ПЧ2 СО, В	Сигнал обратной связи от ПЧ Н2 СО
37	ПЧ Н1 СО АО	AO 0 10 P	Ц	Задание на ПЧ1, В	Управляющий сигнал на ПЧ H1 CO
38	ПЧ Н2 СО АО	AO 0-10 B	Нет	Задание на ПЧ2, В	Управляющий сигнал на ПЧ Н2 СО

Входы/выходы ECL-3R 331 FC преднастроены на определенные типы сигналов (колонка «Тип штатного сигнала»). Из аналоговых входов используются Pt1000 для датчиков температуры, 4–20 мА для датчиков давления и 0–10 В для сигнала обратной связи от привода клапана или ПЧ насоса. Часть дискретных входов является беспотенциальными (17–22, 27, 28), часть требует включения в цепь источника питания 24 В пост. тока (15, 16). Выходы 1–10 представлены пятью электромагнитными реле 220 В/3 А. Выходы 29–32 — транзисторные (24 В/50 мА), для их коммутации на высоковольтные цепи предусмотрен комплектный модуль ECL-3R Triac с твердотельными выходами 220 В/2 А. Для управления регулирующим клапаном с аналоговым приводом и насосами от ПЧ используются входы/выходы 33–38, преднастроенные на сигналы управления и обратной связи 0–10 В пост. тока.


При настройке контроллера под определенную конфигурацию оборудования могут остаться незадействованные входы/выходы. В ECL-3R 331 FC предусмотрена возможность их использования для мониторинга сигналов с датчиков различных типов (колонка «Тип сигнала мониторинга»).

Применение ECL-3R 317 FC

Схема электрических подключений ECL-3R 317 FC

Конфигурация входов/ выходов ECL-3R 317 FC и дополнительного модуля ECL-3R Triac

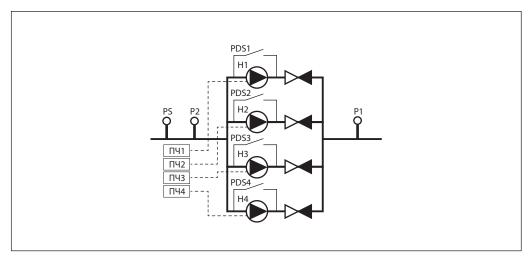
Ю	Обозначение на схеме	Тип штатного сигнала	Тип сигнала монито- ринга	Обозначение в контроллере	Описание
2	Н1_ГВС			Включить Н (ПЧ) 1 ГВС	Сигнал на запуск насоса (ПЧ) 1 ГВС
4	Н2_ГВС			Включить Н (ПЧ) 2 ГВС	Сигнал на запуск насоса (ПЧ) 2 ГВС
6	DO6	Э/м реле	Нет	DO6	Управление с дисплея или через Модбас
8	DO8	(220 B 3 A)		DO8	Управление с дисплея или через Модбас
10	DO10			DO10	Управление с дисплея или через Модбас
11	Рпод_ГВС		DI 24 B	Давл. подачи ГВС, бар	Давление подачи ГВС
12	Робр_ГВС	4.20. 4		Давл. обратки ГВС, бар	Давление обратки ГВС
13	Рпод.тс	4-20 мА	AI 0-10 B	Давл. под.тс, бар	Давление подачи теплосети
14	Робр.тс		AI 4-20 MA	Давл. обр.тс, бар	Давление обратки теплосети
15	P_XBC			Давление ХВС	Давление ХВС
16	DI16	DI 24 B		DI16	Сигнал на мониторинг
17	PS_FBC		DI 0 B Pt1000 HeT DI 0 B Pt1000	Наличие воды Н_ГВС	Наличие воды на входе насосов ГВС
18	PDS_H1_FBC			Перепад давл. Н1_ГВС	Перепад давления на первом насосе ГВС, или общий
19	PDS_H2_FBC	DIOB		Перепад давл. Н2_ГВС	Перепад давления на втором насосе ГВС
20	Авария Н1_ГВС			Авария Н(ПЧ) 1 ГВС	Авария насоса 1 ГВС
21	Авария Н2_ГВС			Авария Н(ПЧ) 2 ГВС	Авария насоса 2 ГВС
22	Резервный DI-0V			DI22	Сигнал на мониторинг
23	Тпод.тс			Темп. под.тс, °С	Температура подачи теплосети
24	Тобр.тс_ГВС	Pt1000		Темп. обр.тс_ГВС, °С	Температура обратки теплосети после ГВС
25	Тпод_ГВС			Темп. подачи ГВС, °С	Температура подачи ГВС
26	T_XBC			Темп. ХВС, °С	Температура ХВС
27	Резервный DI-0V	DIOB		DI27	Сигнал на мониторинг
28	Резервный DI-0V	DI 0 В		DI28	Сигнал на мониторинг
29	Общая авария	DO Ha ECL-3R Triac (24 B 50 MA/ 220 B 2 A) AI 0-10 B AO 0-10 B	Нет	Общая авария	Сигнал наличия любой аварии
30	Авария Насосов			Авария насосов ГВС	Сигнал аварии на любом насосе ГВС
31	Клап_ГВС+		DI 24 B AI 0-10 B	Открыть клапан ГВС	Сигнал на открытие клапана ГВС
32	Клап_ГВС-			Закрыть клапан ГВС	Сигнал на закрытие клапана ГВС
33	Клап_ГВС AI			Отклик клап. ГВС, В	Сигнал обратной связи от клапана ГВС
34	Клап_ГВС АО			Задание клап. ГВС, В	Управляющий сигнал на клапан ГВС
35	ПЧ Н1 ГВС АІ			Отклик ПЧ1 ГВС, В	Сигнал обратной связи от ПЧ Н1 ГВС
36	ПЧ Н2 ГВС АІ			Отклик ПЧ2 ГВС, В	Сигнал обратной связи от ПЧ Н2 ГВС
37	ПЧ Н1 ГВС АО			Задание на ПЧ1, В	Управляющий сигнал на ПЧ H1 ГВС
38	ПЧ Н2 ГВС АО	AO 0-10 B	Нет	Задание на ПЧ2, В	Управляющий сигнал на ПЧ Н2 ГВС

Входы/выходы ECL-3R 317 FC преднастроены на определенные типы сигналов (колонка «Тип штатного сигнала»). Из аналоговых входов используются Pt1000 для датчиков температуры, 4-20 мА для датчиков давления и 0-10 В для сигнала обратной связи от привода клапана или ПЧ насоса. Часть дискретных входов является беспотенциальными (17-22, 27, 28), часть требует включения в цепь источника питания 24 В пост. тока (16). Выходы 1-10 представлены пятью электромагнитными реле 220 В/3 А. Выходы 29-32 – транзисторные (24 В/50 мА), для их коммутации на высоковольтные цепи предусмотрен комплектный модуль ECL-3R Triac с твердотельными выходами 220 В/2 А. Для управления регулирующим клапаном с аналоговым приводом и насосами от ПЧ используются входы/выходы 33-38, преднастроенные на сигналы управления и обратной связи 0-10 В пост. тока.

При настройке контроллера под определенную конфигурацию оборудования могут остаться незадействованные входы/выходы. В ECL-3R 317 FC предусмотрена возможность их использования для мониторинга сигналов с датчиков различных типов (колонка «Тип сигнала мониторинга»).

Назначение ECL-3R Pumps

Контроллер серии ECL-3R Pumps предназначен для решения широкого круга задач по автоматизации насосных станций с контролем давления или перепада давления. В контроллере обеспечена поддержка следующих двух схем регулирования:


- 1. «Один от ПЧ». Схема с одним рабочим и одним резервным насосами под управлением общего преобразователя частоты (ПЧ), который, в соответствии с заданным расписанием, обеспечивает поочередное включение насосов. В случае аварии ПЧ предусмотрена возможность автоматического перевода рабочего насоса на сеть.
- «Каскад». Каскадная схема с насосами, управляемыми от индивидуальных ПЧ или от сети.
 Общее число насосов – до 4-х. Скорости насосов от ПЧ выравниваются.
 По схеме «Каскад» можно также запускать

станции циркуляции с насосами от сети без контроля давления.

В обеих схемах управление ПЧ обеспечивается дискретным сигналом на запуск и аналоговым сигналом 0–10 В на выдачу требуемой частоты. Контроль целевого давления реализован на базе ПИД-алгоритма.

Настройка и просмотр текущих значений параметров осуществляются через интерфейс контроллера при помощи 6-кнопочной клавиатуры. Два порта RS-485 могут быть использованы для подключения к контроллеру визуальной панели оператора, для интеграции контроллера в систему диспетчеризации по протоколу Modbus RTU и для обмена показаниями датчика давления на входе между несколькими контроллерами. Резервные входы контроллера могут быть использованы для мониторинга дополнительных датчиков — дискретных, давления (4–20 мА), температуры (Pt1000).

Применение ECL-3R Pumps Каскад

Поддерживаемые устройства

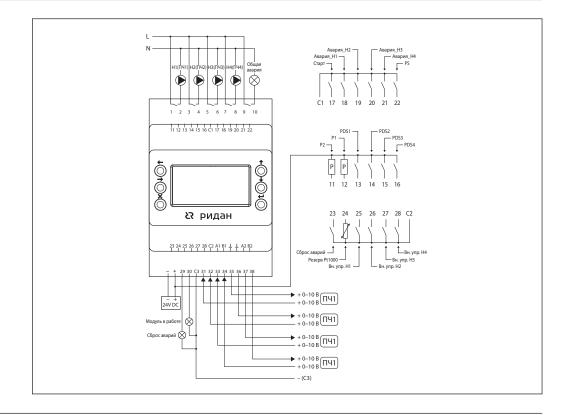
PS pene cyxoro хода PDS1¹, PDS2, PDS3, PDS4 pene перепада давления

P1 датчик давления на выходе (4–20 мА) P2 датчик давления на входе (4–20 мА)

Н1, Н2, Н3, Н4 насосы

ПЧ1, ПЧ2, ПЧ3, ПЧ4 преобразователи частоты (управление 0–10 В)

¹ В конфигурациях с одним рабочим насосом PDS1 может выступать в роли общего датчика на насосную группу.



Конфигурация входов/ выходов ECL-3R Pumps Каскад

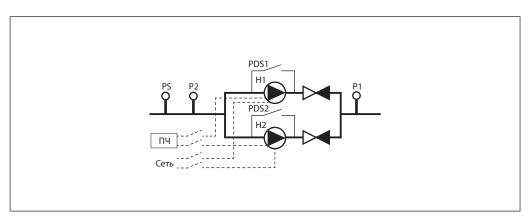

Ю	Обозначение на схеме	Тип штатного сигнала	Тип сигнала мониторинга	Обозначение в контроллере	Описание
2	H1			Включить Н (ПЧ) 1	Сигнал на запуск насоса (ПЧ) 1
4	H2			Включить Н (ПЧ) 2	Сигнал на запуск насоса (ПЧ) 2
6	H3	Э/м реле (220 В 3 А)	Нет	Включить Н (ПЧ) 3	Сигнал на запуск насоса (ПЧ) 3
8	H4	(220 B 3 A)		Включить Н (ПЧ) 4	Сигнал на запуск насоса (ПЧ) 4
10	Общая авария			Общая авария	Сигнал наличия какой-либо аварии
11	P2	4-20 MA	Давление, бар (4–20 мА)	Давление на входе, бар	Давление на входе
12	P1	4-20 MA	Нет	Давление на выходе, бар	Давление на выходе
13	PDS1			Перепад давл. Н1	Перепад давления на насосе 1 или группе насосов
14	PDS2	DI 24 B	Давление, бар (4–20 мА)	Перепад давл. Н2	Перепад давления на насосе 2
15	PDS3		(4-20 MA)	Перепад давл. Н3	Перепад давления на насосе 3
16	PDS4			Перепад давл. Н4	Перепад давления на насосе 4
17	Старт		Нет	Физический старт	Дискретный вход для запуска автоматики
18	Авария Н1		DI 0B	Авария Н (ПЧ) 1	Сигнал аварии насоса (ПЧ) 1
19	Авария Н2			Авария Н (ПЧ) 2	Сигнал аварии насоса (ПЧ) 2
20	Авария Н3	DI 0B		Авария Н (ПЧ) 3	Сигнал аварии насоса (ПЧ) 3
21	Авария Н4			Авария Н (ПЧ) 4	Сигнал аварии насоса (ПЧ) 4
22	PS			Наличие воды	Сигнал от датчика наличия воды в трубе
23	Сброс аварий		Нет	Сбросить аварии	Вход для сброса текущих аварий
24	Резерв	Нет	Pt1000	Резервный Pt1000, °C	Вход для резервного датчика температуры
25	Вн.упр.Н1		Нет	Внешнее упр. Н1	Сигнал передачи H1 на внешнее управление
26	Вн.упр.Н2	DLOB	Pt1000	Внешнее упр. Н2	Сигнал передачи H2 на внешнее управление
27	Вн.упр.Н3	DIUB		Внешнее упр. Н3	Сигнал передачи Н3 на внешнее управление
28	Вн.упр.Н4			Внешнее упр. Н4	Сигнал передачи Н4 на внешнее управление
29	Сброс аварий	DO (24 B		Сбросить аварии	Сигнал события ручного сброса аварий
30	Модуль в работе	50 mA)	Нет	Модуль в работе	Индикации статуса «модуль в работе»
31	ПЧ1 АІ			Отклик ПЧ1, В	Сигнал обратной связи от ПЧ Н1
32	ПЧ2 АІ	AI 0-10 B	DIMP	Отклик ПЧ2, В	Сигнал обратной связи от ПЧ Н2
33	ПЧЗ АІ	AIU-IUB	DI 24 B	Отклик ПЧ3, В	Сигнал обратной связи от ПЧ Н3
34	ПЧ4 АІ			Отклик ПЧ4, В	Сигнал обратной связи от ПЧ Н4
35	ПЧ1 АО			Задание ПЧ1, В	Сигнал управления на ПЧ Н1
36	ПЧ2 АО	AO 0-10 B	Нет	Задание ПЧ2, В	Сигнал управления на ПЧ Н2
37	ПЧЗ АО	700-10 B		Задание ПЧЗ, В	Сигнал управления на ПЧ Н3
38	ПЧ4 АО			Задание ПЧ4, В	Сигнал управления на ПЧ Н4

Схема электрических подключений ECL-3R Pumps Kackag

Применение ECL-3R Pumps Один ПЧ

Поддерживаемые устройства

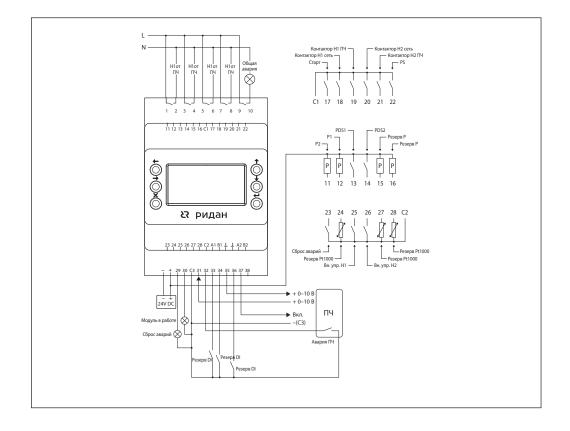
PS реле сухого хода PDS1¹, PDS2 реле перепада давления

P1 датчик давления на выходе (4–20 мА) P2 датчик давления на входе (4–20 мА)

Н1, Н2 насосы

ПЧ преобразователи частоты (управление 0–10 В) Сеть питание для прямого включения насосов от сети

В конфигурациях с одним рабочим насосом PDS1 может выступать в роли общего датчика на насосную группу.



Конфигурация входов/ выходов ECL-3R Pumps Один ПЧ

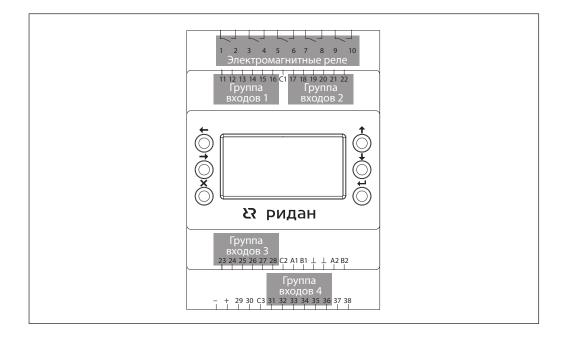
Ю	Обозначение на схеме	Тип штатного сигнала	Тип сигнала мониторинга	Обозначение в контроллере	Описание
2	Н1 от ПЧ			Включить Н1 от ПЧ	Сигнал на запуск Н1 от ПЧ
4	Н1 от сети	Э/м реле		Включить Н1 от сети	Сигнал на запуск Н1 от сети
6	Н2 от ПЧ		Нет	Включить Н2 от ПЧ	Сигнал на запуск Н2 от ПЧ
8	Н2 от сети	(220 B 3 A)	пет	Включить Н2 от сети	Сигнал на запуск Н2 от сети
10	Общая авария			Общая авария	Сигнал наличия какой-либо аварии
11	P2	4–20 мА	Давление, бар (4–20 мА)	Давление на входе, бар	Давление на входе
12	P1		Нет	Давление на вых., бар	Давление на выходе
13	PDS1	DI 24 B		Перепад давл. Н1	Перепад давления на насосе 1 или группе насосов
14	PDS2		Парпанна бар	Перепад давл. Н2	Перепад давления на насосе 2
15	Резерв	Нет	Давление, бар (4–20 мА)	Резервный 4–20 мА, бар	Вход для резервного датчика давления
16	Резерв	пет		Резервный 4–20 мА, бар	Вход для резервного датчика давления
17	Старт		Нет	Физический старт	Дискретный вход для запуска автоматики
18	Контактор Н1 сеть		DI 0B	Контактор Н1 сеть	Сигнал с контактора сети на Н1
19	Контактор Н1 ПЧ			Контактор Н1 ПЧ	Сигнал с контактора ПЧ на Н1
20	Контактор H2 сеть	DI 0B		Контактор Н2 сеть	Сигнал с контактора сети на Н2
21	Контактор Н2 ПЧ			Контактор Н2 ПЧ	Сигнал с контактора ПЧ на Н2
22	PS			Наличие воды	Сигнал от датчика наличия в трубе воды
23	Сброс аварий		Нет	Сбросить аварии	Вход для сброса текущих аварий
24	Резерв	Нет	Pt1000	Резервный Pt1000, °C	Вход для резервного датчика температуры
25	Вн.упр.Н1	DLOB	Нет	Внешнее упр. Н1	Сигнал передачи Н1 на внешнее управление
26	Вн.упр.Н2	DIOB	Hei	Внешнее упр. Н2	Сигнал передачи H2 на внешнее управление
27	Резерв	Нет	Pt1000	Резервный Pt1000, °C	Вход для резервного датчика температуры
28	Резерв	Tiei	Pt1000	Резервный Pt1000, °C	Вход для резервного датчика температуры
29	Сброс аварий	DO (24 B	Нет	Сбросить аварии	Сигнал события ручного сброса аварий
30	Модуль в работе	50 mA)	пет	Модуль в работе	Индикации статуса «модуль в работе»
31	ПЧ АІ	AI 0-10 B		Отклик ПЧ, В	Сигнал обратной связи от ПЧ
32	Авария ПЧ	DI 24 B		Авария ПЧ	Сигнал аварии ПЧ
33	Резерв	Нет	DI 24 B	Резервный DI-24 В	Вход для резервного дискретного датчика
34	Резерв	пет		Резервный DI-24 В	Вход для резервного дискретного датчика
35	ПЧ АО	AO 0-10 B	Нет	Задание ПЧ, В	Сигнал управления на ПЧ
36	Резерв	Нет	DI 24 B	Резервный DI-24 В	Вход для резервного дискретного датчика
37	ПЧ ВКЛ	DO (24 B 50 mA)	Нет	Включить ПЧ	Сигнал на включение ПЧ

Схема электрических подключений ECL-3R Pumps Один ПЧ

Назначение ECL-3R MM

Контроллеры серии ECL-3R MM (Модуль мониторинга) предназначены для использования в системах автоматизации и диспетчеризации технологических процессов ЖКХ. ECL-3R MM поддерживает наиболее распространенные типы датчиков и отличается гибкостью в настройке входов. Графический интерфейс ECL-3R MM позволяет легко изменять конфигурацию входов контроллера под требования приложения. Для удобства пользователя на всех входах контроллера предусмотрена индивидуальная нормализация считываемых показаний с выбором подходящих единиц измерения для отображения на дисплее. По умолчанию токовые входы сконфигурированы под датчики давления 4-20 мА с показаниями в атмосферах (0-16 бар); на входах по напряжению (0-10 В) значения пересчитываются в проценты (0-100 %). Поддерживается до 24 дискретных датчиков типа сухой контакт — часть из них подключается на соответствующие клеммы контроллера напрямую (DI), часть — через цепь блока питания (DI 24 B). Дополнительно в ECL-3R MM предусмотрено управление пятью встроенными электромагнитными реле (3 А/220 В) — с дисплея контроллера или дистанционно через диспетчеризацию.

ECL-3R ММ оснащен двумя портами RS-485, которые могут быть использованы для подключения к контроллеру визуальной панели оператора или для интеграции контроллера в систему диспетчеризации по протоколу Modbus RTU.

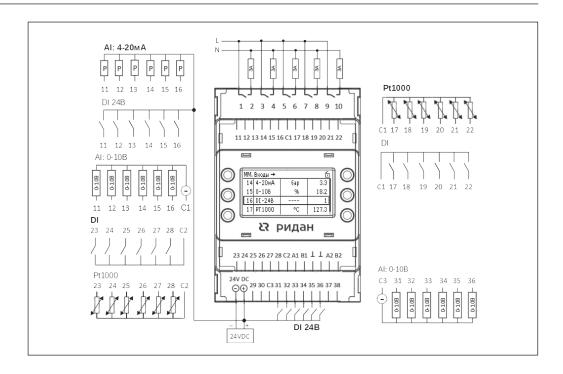

ECL-3R MM выполняет следующие функции:

- Считывание и обработка следующих типов входных сигналов:
 - токовый (4–20 мА)
 - напряжение (0–10 В пост. тока)
 - температура (Pt1000)
 - сухой контакт (без подачи напряжения DI, и под напряжением 24 В постоянного тока — DI 24 В).
- Настройка входов по типам сигналов с дисплея.
- Настройка фильтрации и пересчета сигналов на входах (нормализация).
- Выбор единиц измерения для отображения показаний на дисплее.
- Возможность управления 5 э/м реле с дисплея контроллера или удаленно через диспетчеризацию.
- Интеграция в систему диспетчеризации через два серийных порта RS-485.

Контроллер ECL-3R

HAANG

Группы входов/выходов ECL-3R MM



Поддерживаемые датчики на входах и допустимые нагрузки на выходах ECL-3R MM

Группа IO	Клеммы	Поддерживаемые датчики	Диапазон измерения/ нагрузки
ЭМ реле	1-10	Э/м реле (управление)	Нагрузка до 3 A@220 B
		AI 4-20 mA*	0-25 мА
Группа входов 1	11-16	AI 0-10 B	0-10 B
		DI 24 B	30 В пост. тока макс.
E 2	17-22	Pt1000*	−70−200 °C
Группа входов 2		DI	-
E	22.20	DI*	_
Группа входов 3	23-28	Pt1000	−70−200 °C
5 4	21.26	DI 24 B*	30 В пост. тока макс.
Группа входов 4	31-36	AI 0-10 B	0-10 B

^{* -} Заводские настройки.

Схема электрических подключений ECL-3R MM

Схема подключения датчика Pt1000

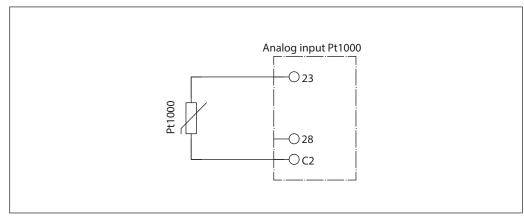
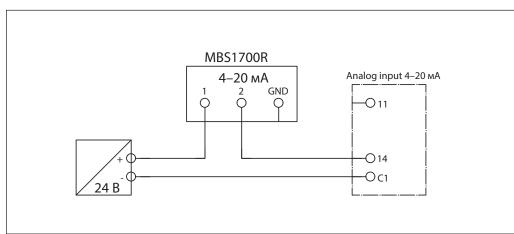
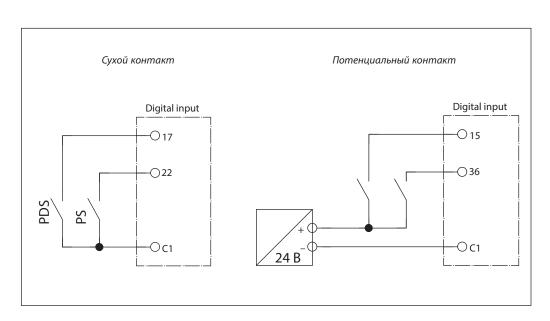




Схема подключения преобразователей давления с выходным сигналом 4–20 мА

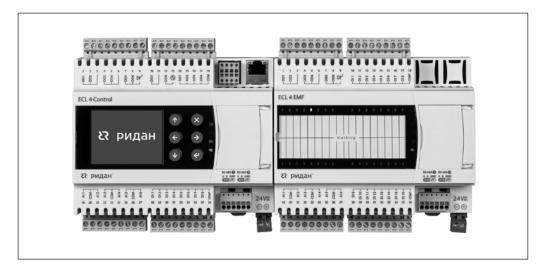
Для питания аналоговых датчиков рекомендуется использовать отдельный блок питания.

Схема подключения KPI35R или PDS/ на дискретные выходы

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м.о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru


Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Техническое описание

Контроллер ECL4 Control

Описание и область применения

Конфигурируемый электронный регулятор ECL4 Control — специализированное устройство, предназначенное для регулирования температуры теплоносителя в системах отопления с учетом температуры наружного воздуха, либо заданной температуры воды в системах ГВС. ECL4 Control позволяет пользователю настроить схему приложения под свои индивидуальные потребности, в рамках поддерживаемого функционала двухконтурного регулирования.

Новый контроллер ECL4 Control существенно отличается от своих предшественников. Отличительной чертой ECL4 Control является наличие графического и интуитивно понятного конфигуратора приложения, выполненного на базе встроенного веб-сервера. Предусмотрены возможности сохранения базовых настроек текущей конфигурации и обмен профилями конфигурации между ECL4 Control одного типа. Также, в конфигураторе формируется графическая схема выбранной конфигурации и схема подключений входов-выходов, которые могут быть выгружены в формате pdf.

Для текущего контроля работы теплового пункта можно использовать цветной графический дисплей, на который в многостраничном режиме выводятся основные технологические параметры приложения.

Для навигации по меню дисплея служит 6-кнопочная клавиатура с которой производятся все настройки контроллера.

Встроенный алгоритм управления системами отопления и горячего водоснабжения позволяет применить наиболее совершенные и проверенные методы управления системами теплопотребления, что исключает затраты времени на программирование и возможные при этом ошибки

Базовые коммуникационные возможности ECL4 Control включают в себя три порта RS-485, один из которых в расширенных версиях используется для присоединения дополнительного модуля входов-выходов, а второй для подключения общего датчика температуры наружного воздуха. Свободный порт RS-485 может быть использован для подключения ECL4 Control к системам диспетчеризации по протоколу Modbus RTU.

Контроллер оснащен дополнительным портом Ethernet, который может применяться как для интеграции в систему диспетчеризации клиента по протоколу Modbus TCP, так и для подключения контроллера к системе облачной диспетчеризации «Данфосс» Cloud-Control. Контроллер ECL4 Control и система удаленного мониторинга и управления Cloud-Control разрабатывались как единое решение, основным преимуществом которого является отсутствие со стороны клиента дополнительных затрат на программирование и наладку.

Функции

Программируемый электронный регулятор ECL4 Control обеспечивает регулировку температуры теплоносителя, поступающего в систему отопления, в зависимости от температуры наружного воздуха в соответствии с температурным графиком в целях обеспечения заданной температуры воздуха в отапливаемых помещениях здания, а также поддерживает требуемую температуру горячей воды в системе ГВС.

ECL4 Control может управлять одним или двумя циркуляционными насосами и насосами подпитки. При работе с двумя циркуляционными насосами доступна функция чередования насосов в соответствии с заданным расписанием. При аварии активного насоса переключение на второй насос происходит принудительно. Возможно контролировать время наработки каждого насоса для автоматического выравнивания их ресурсов, а также отслеживать их текущее состояние.

Доступная функция управления циркуляционными насосами от индивидуальных частотных преобразователей с регулированием по давлению (Р или Δ P, сигнал 0-10B)

Для каждого контура возможно выбрать один из пяти режимов работы:

Ручной — служит для ручного управления положением клапана и включения/выключения циркуляционного насоса; автоматическое регулирование отключено.

Комфортный — режим работы модуля с номинальной уставкой температуры отопления.

Экономичный — режим работы модуля с пониженной уставкой температуры отопления.

Автоматический — режим работы модуля со встроенным чередованием комфортного и экономичного режимов работы по графику (недельному и суточному). Этот режим оптимален с точки зрения энергосбережения.

Аварийный — режим работы модуля, при котором температура в СО и ГВС поддерживается на минимальном заданном уровне. Этот режим может применяться в качестве защиты от замерзания.

Возможно активировать каждый модуль автоматики.

При отключенном модуле будет происходить мониторинг всех датчиков.

Имеются встроенные часы реального времени.

Погодозависимое ограничение температуры возвращаемого теплоносителя или ограничение по фиксированной величине. Предусмотрен ряд ограничений и влияний, которые могут приводить к корректировке отопительного графика:

- задание предельных значений температуры отопления;
- снижение температуры отопления для компенсации завышенной температуры обратки теплосети:
- ограничение температуры отопления в зависимости от температуры подачи сети;
- снижение температуры отопления для компенсации недогретого контура ГВС.

Система подпитки включает в себя клапан с дискретным управлением и до двух циркуляционных насосов. Включение подкачки теплоносителя из контура сети в контур здания производится по показаниям аналогового датчика давления, либо реле давления.

При аварии дежурного насоса по сигналу от насоса или опционального реле перепада давления на нем управление переходит к другому насосу (при наличии) и формируется соответствующая авария. Предусмотрена фиксация количества включений подпитки и наработки насосов в часах. Специальной функцией является опция автоматического заполнения контура отопления при первом включении («Заполнять при старте»).

ECL4 Control имеет техническую возможность передавать данные по протоколу Modbus TCP/RTU внешнему устройству, а также в облачную систему диспетчеризации Cloud-Control.

Регулятор ECL4 прост в монтаже, настройке и эксплуатации и не требует привлечения для этих работ высококвалифицированных специалистов. Работа регулятора осуществляется автономно без постоянного надзора.

С подробной информацией вы можете ознакомиться на нашем портале

Контроллер ECL4 Control

Номенклатура и кодовые номера для оформления заказа

Тип	Описание	Кодовый номер
Контроллер		
ECL4	ECL4 Control 368R Ethernet	087H374984R
ECL4	ECL4 Control 368R ПЧ Ethernet	087H374973R
Блок питания 220/24	Блок питания для ECL, 24 B, 36 Вт	082X9190R
Блок питания 220/24	Блок питания для ECL, 24 B, 60 Вт	082X9191R
Датчики температу	уры, реле давления, преобразователи давления для ECL	
MBT 3380R	Датчик температуры наружного воздуха (–50+95 °C)	097U1115R
MBT 5250R	Датчик погружной, L = 50 мм, (–50+200 °C), нержавеющая сталь	084Z8083R
MBT 5250R	Гильза для датчика температуры MBT, 50 мм	084Z7258R
MBT 5250R	Датчик погружной, L = 100 мм, (–50+200 °C), нержавеющая сталь	084Z8139R
MBT 5250R	Гильза для датчика температуры MBT, 100 мм	084Z7259R
MBT 5250R	Датчик погружной, L = 150 мм, (–50+200 °C), нержавеющая сталь	084Z2113R
MBT 5250R	Гильза для датчика температуры MBT, 150 мм	084Z7260R
MBT 5250R	Датчик погружной, L = 200 мм, (–50+200 °C), нержавеющая сталь	084Z2257R
MBT 5250R	Гильза для датчика температуры MBT, 200 мм	084Z7261R
MBT 3381R	Датчик поверхностный, для монтажа на трубе (–60+180°C)	097U1113R
MBT 3281R	Датчик температуры накладной (0+100°C)	097U0113R
KPI 36R	Реле давления KPI 36R, G¼, диапазон уставок 2–14 бар, дифф. 1–4 бар	060-118966R
KPI 35R	Реле давления KPI 35R, G¼, диапазон уставок 0,2–7,5 бар, дифф. 0,7–4 бар	060-121766R
RT362R	Реле перепада давления RT362R, диапазон настройки 0,2–2 бар, дифференциал 0,05–0,08 бар	017D001566R
MBS1700R	MBS1700R Преобразователь давления 0–6 бар, 4–20 мА	060G6104R
MBS1700R	MBS1700R Преобразователь давления 0–10 бар, 4–20 мА	060G6105R
MBS1700R	MBS1700R Преобразователь давления 0–16 бар, 4–20 мА	060G6106R

Наиболее популярный случай регулирования контура отопления и ГВС доступен в базовой версии контроллера ECL4 Control 368R. В версии ПЧ присутствует модуль расширения для подключения дополнительных датчиков.

Особенностью модификации «ПЧ» является возможность управления циркуляционными насосами с индивидуально подключенными преобразователями частоты по давлению или перепаду давления.

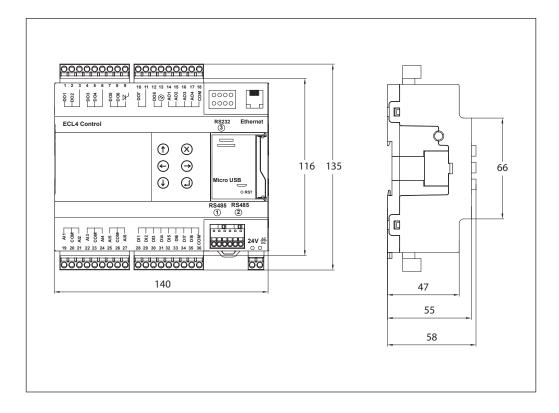
Контроллер ECL4 Control

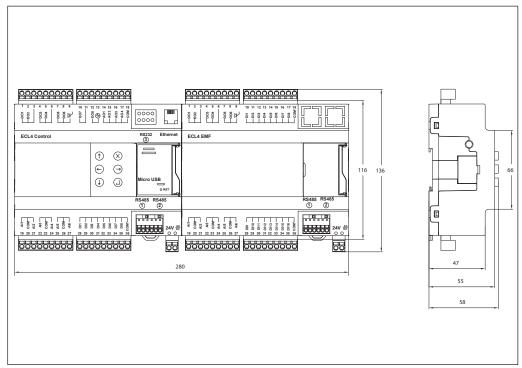
Основные технические характеристики

Контроллер ECL4 Control

Размеры, мм	
Ширина	140,0
Высота	110,0
Глубина	55,0
Крепление	Ha DIN-рейку
 Интерфейсы для настройки и отображения статуса	
Дисплей и клавиатура	Цветной дисплей 320 x 240, 6 кнопок
Светодиоды статуса работы, шт.	4
Разъем для подключения к встроенному веб- серверу	MicroUSB
Интерфейсы для сбора и передачи данных	
RS-485 №1	Скорость 4800–115200 бит/с,
RS-485 №2	есть терминаторы 120 Ом (вкл/выкл)
Ethernet (опционально)	LAN 100 Mbit/s
Часы реального времени	
Срок действия	7 лет на съемной батарее CR1632
Питание	
Номинальное напряжение	24 В, пост. или перем. ток
Диапазон допустимого напряжения	16–48 В пост. тока 18–36 В перем. тока
Максимальная потребляемая мощность	10 Вт
Защита по питанию	Сменный плавкий предохранитель

Модуль расширения ECL4 EMF


Размеры, мм		
Ширина	140,0	
Высота	110,0	
Глубина	55,0	
Крепление	Ha DIN-рейку	
Питание		
Номинальное напряжение	24 В, пост. или перем. ток	
Диапазон допустимого напряжения	16–48 В пост. тока 18–36 В перем. тока	
Максимальная потребляемая мощность	5 Вт	
Защита по питанию	Сменный плавкий предохранитель	


Типы сигналов входоввыходов

Тип входа- выхода	Тип сигнала	Примечания
AI датчики температуры	Pt1000	Датчики температуры Pt1000
AI датчики давления	4-20 мА	Диапазон давления 0–6 бар или 0–-16 бар можно задать в контроллере
AO	0-10 B	Ток нагрузки <5 мА
DI	Сухой контакт	В цепи датчика требуется внешнее питание 24 В DC
	Э/м реле 400 В перем. тока, 5 А нагрузки	Э/м реле используются для коммутации насосов и выдачи оповещений
DO	Твердотельные реле до 270 В перем. тока, 1 А нагрузки	Твердотельные реле используются для управления импульсными приводами клапанов и помечены символом №

Габаритные размеры

Схема приложения для ECL4 Control 368R Ethernet

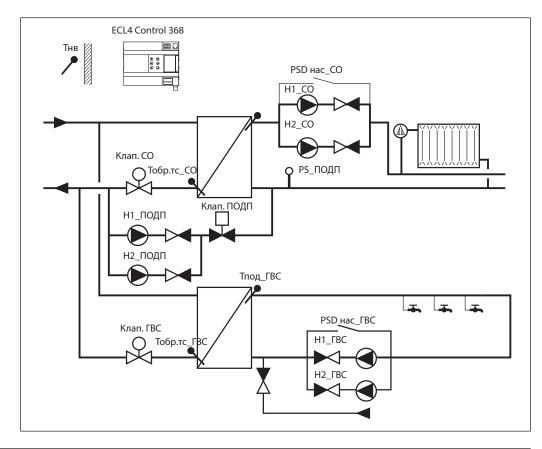
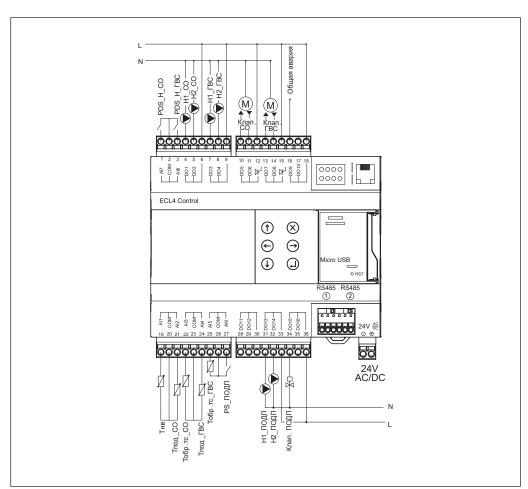
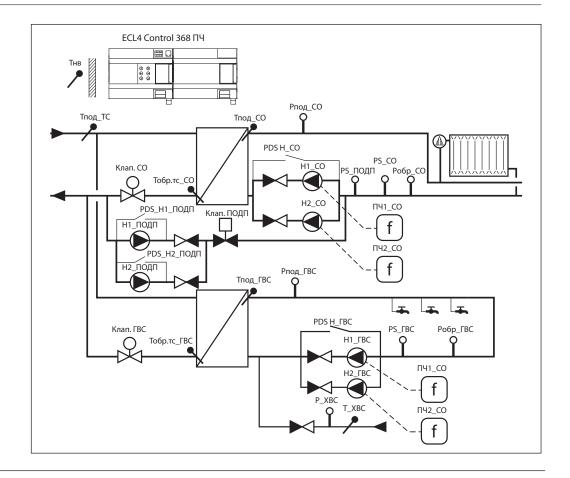



Схема электрических подключений для ECL4 Control 368R Ethernet

Контроллер ECL4 Control


Конфигурация входов и выходов контроллера ECL4 Control 368R Ethernet

Устройство	Вход/ Выход	Модуль	Обозначение на схеме	Описание
	AI1	Узел ввода	Тнв	Температура наружного воздуха
	AI2	CO	Тпод_ТС	Температура подачи теплосети
	AI3	CO	Тпод_СО	Температура подачи СО
	Al4	ГВС	Тобр.тс_СО	Температура обратки после ТО СО
	AI5	ГВС	Тпод_ГВС	Температура подачи ГВС
	Al6	ГВС	PS_ПОДП	Реле давления на включение подпитки
	AI71)	СО	PDS.hac_CO	Реле перепада давления на насосах СО
	AI81)	ГВС	PDS.нас_ГВС	Реле перепада давления на насосах ГВС
	DO1	СО	H1_CO	Управляющий сигнал 1 насосу СО
	DO2	CO	H2_CO	Управляющий сигнал 2 насосу СО
F.C. 4	DO3	ГВС	Н1_ГВС	Управляющий сигнал 1 насосу ГВС
ECL4 Control	DO4	ГВС	Н1_ГВС	Управляющий сигнал 2 насосу ГВС
Control	DO5	CO	Клап.СО	Сигнал на открытие клапана СО
	D06	СО	Клап.СО	Сигнал на закрытие клапана СО
	D07	ГВС	Клап.ГВС	Сигнал на открытие клапана ГВС
	DO8	ГВС	Клап.ГВС	Сигнал на закрытие клапана ГВС
	DO9	Общее	_	_
	DO10	_	_	_
	DO11			
	DO12			
	DO13	Подпитка	Н1_ПОДП	Управляющий сигнал 1 насосу подпитки
	DO14	Подпитка	Н1_ПОДП	Управляющий сигнал 2 насосу подпитки
	DO15	Подпитка	Клап.ПОДП	Управляющий сигнал клапану подпитки

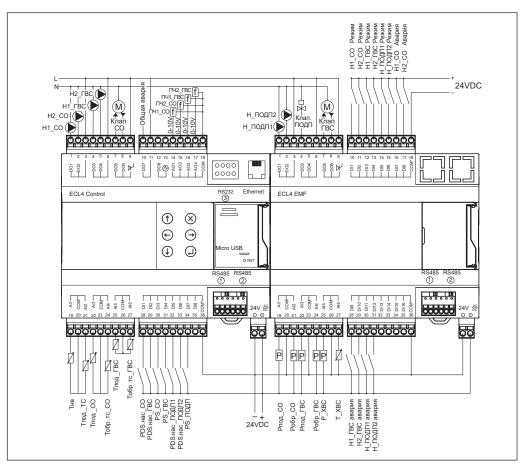

¹⁾ Аналоговые входы (AI) используются как дискретные входы (DI).

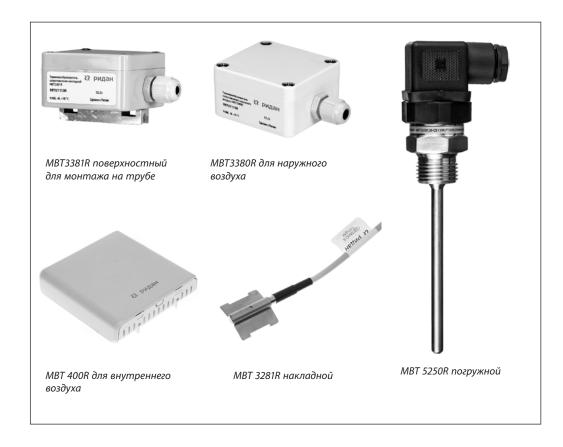
Схема приложения для ECL4 Control 368R ПЧ Ethernet

Электрические подключения датчиков и исполнительного оборудования ECL4 Control 368R ПЧ Ethernet

Конфигурация входов и выходов контроллера ECL4 Control 368R ПЧ Ethernet

Устройство	Вход/ Выход	Модуль	Обозначение на схеме	Обозначение в контроллере	Описание
	Al1	Узел ввода	Тнв	Темп. наружного воздуха	Температура наружного воздуха
	AI2	Узел ввода	Тпод.тс	Темп. подачи теплосети	Температура подачи теплосети
	AI3	CO	Тпод_СО	Темп. подачи СО	Температура подачи СО
	Al4	CO	Тобр.тс_СО	Темп. обр.тс_СО	Температура обратки тс после ТО СО
	AI5	ГВС	Тпод_ГВС	Темп. подачи ГВС	Температура подачи ГВС
	Al6	ГВС	Тобр.тс_ГВС	Темп.обр.тс_ГВС	Температура обратки тс после ТО ГВС
	DI1	CO	PDS_H_CO	Перепад давления Н_СО	Перепад давления на насосах СО
	DI2	ГВС	PDS_H_FBC	Перепад давления Н_ГВС	Перепад давления на насосах ГВС
	DI3	CO	PS_CO	Наличие воды Н_СО	Наличие воды на входе насосов СО
	DI4	ГВС	PS_FBC	Наличие воды Н_ГВС	Наличие воды на входе насосов ГВС
	DI5	Подпитка	PDS_H1_ПОДП	Перепад Н1_ПОДП	Перепад давления насоса 1 ПОДП
	DI6	Подпитка	PDS_H2_ПОДП	Перепад Н2_ПОДП	Перепад давления насоса 2 ПОДП
ECL4	DI7	CO	PS_ПОДП	Включить подпитку	Требование на включение ПОДП
Control	DI8	Общее	_	Критическая авария	Наличие критической аварии
	AO1	CO	ПЧ1_СО	Задание ПЧ1 СО	Задание (0-10В) на ПЧ1 СО
	AO2	СО	ПЧ2_СО	Задание ПЧ2 СО	Задание (0-10В) на ПЧ2 СО
	AO3	ГВС	ПЧ1_ГВС	Задание ПЧ1 ГВС	Задание (0-10В) на ПЧ1 ГВС
	AO4	ГВС	ПЧ2_ГВС	Задание ПЧ2 ГВС	Задание (0-10В) на ПЧ2 ГВС
	DO1	СО	H1_CO	Включить Н (ПЧ) 1 СО	Сигнал на запуск насоса (преобразователя частоты) 1 CO
	DO2	СО	H2_CO	Включить Н (ПЧ) 2 СО	Сигнал на запуск насоса (преобразователя частоты) 2 CO
	DO3	ГВС	Н1_ГВС	Включить Н (ПЧ) 1 ГВС	Сигнал на запуск насоса (преобразователя частоты) 1 ГВС
	DO4	ГВС	Н2_ГВС	Включить Н (ПЧ) 2 ГВС	Сигнал на запуск насоса (преобразователя частоты) 2 ГВС
	DO5	CO	Клап.СО	Открыть клапан СО	Сигнал на открытие клапана СО
Ī	D06	СО	Клап.СО	Закрыть клапан СО	Сигнал на закрытие клапана СО
	DO7	Общее	_	Общая авария	Общая авария
	Al1	СО	Рпод_СО	Давление подачи СО	Давление подачи СО
	Al2	СО	Робр_СО	Давление обратки СО	Давление обратки СО
	AI3	ГВС	Рпод_ГВС	Давление подачи ГВС	Давление подачи ГВС
	Al4	ГВС	Робр_ГВС	Давление обратки ГВС	Давление обратки ГВС
	AI5	XBC	P_XBC	Давление подачи XBC	Давление подачи XBC
	Al6	XBC	T_XBC	Темп. подачи ХВС	Температура подачи XBC
	DI1	СО	Н1_СО режим	Режим Н (ПЧ) 1 СО	Автоматический режим насоса (преобразователя частоты) 1 CO
	DI2	СО	Н2_СО режим	Режим H (ПЧ) 2 CO	Автоматический режим насоса (преобразователя частоты) 2 CO
	DI3	ГВС	Н1_ГВС режим	Режим Н (ПЧ) 1 ГВС	Автоматический режим насоса (преобразователя частоты) 1 ГВС
ECL4 EMF	DI4	ГВС	Н2_ГВС режим	Режим Н (ПЧ) 2 ГВС	Автоматический режим насоса (преобразователя частоты) 2 ГВС
_CL . LIVII	DI5	Подпитка	Н1_ПОДП	Автом. режим Н1_ПОДП	Автоматический режим насоса 1 ПОДП
	DI6	Подпитка	Н2_ПОДП	Автом. режим Н2_ПОДП	Автоматический режим насоса 2 ПОДП
	DI7	СО	Н1_СО авария	Авария Н (ПЧ) 1 СО	Авария насоса (преобразователя частоты) 1 СО
	DI8	CO	Н2_СО авария	Авария Н (ПЧ) 2 СО	Авария насоса (преобразователя частоты) 2 СО
	DI9	ГВС	Н1_ГВС авария	Авария Н (ПЧ) 1 ГВС	Авария насоса (преобразователя частоты) 1 ГВС
	DI10	ГВС	Н2_ГВС авария	Авария Н (ПЧ) 2 ГВС	Авария насоса (преобразователя частоты) 2 ГВС
	DI11	Подпитка	Н1_ПОДП	Внеш. авария Н1_ПОДП	Внешняя авария насоса 1 подпитки
	DI12	Подпитка	Н2_ПОДП	Внеш. авария Н2_ПОДП	Внешняя авария насоса 2 подпитки
	DO1	Подпитка	Н1_ПОДП	Включить насос 1 ПОДП	Сигнал на включение насоса 1 ПОДП
-	DO2	Подпитка	Н2_ПОДП	Включить насос 2 ПОДП	Сигнал на включение насоса 2 ПОДП
-	DO3	Подпитка	Клап.ПОДП	Открыть клапан ПОДП	Сигнал на открытие клапана ПОДП
	DO5	ГВС	Клап.ГВС	Открыть клапан ГВС	Сигнал на открытие клапана ГВС
		ГВС	Клап.ГВС	Закрыть клапан ГВС	Сигнал на закрытие клапана ГВС

Центральный офис • Компания «Ридан»


Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Термопреобразователи сопротивления платиновые серии MBT

Описание и область применения

Термопреобразователи сопротивления платиновые MBT3380R, MBT3381R, MBT 3281R, MBT 400R, MBT 5250R с чувствительным элементом Pt1000 применяются в зависимости от исполнения для измерения температуры окружающей среды, как снаружи, так и в помещениях, для измерения температуры теплоносителя при монтаже на поверхности трубы и при установке в трубопровод.

Не предназначены для применения в сфере государственного регулирования обеспечения единства измерений.

Номенклатура и коды для оформления заказа

Тип	Описание	Кодовый номер
MBT 3380R	Датчик температуры наружного воздуха (–50+95 °C)	097U1115R
MBT 3381R	Датчик поверхностный для монтажа на трубе (–60+180 °C)	097U1113R
MBT 3281R	Датчик температуры накладной (–50+110 °C)	097U0113R
MBT 400R	Датчик температуры внутреннего воздуха (–50+110 °C)	084N1025R
MBT 5250R	Датчик погружной, L = 50 мм, (–50+200 °C), нержавеющая сталь	084Z8083R
MBT 5250R	Датчик погружной, L = 100 мм, (–50+200 °C), нержавеющая сталь	084Z8139R
MBT 5250R	Датчик погружной, L = 150 мм, (–50+200 °C), нержавеющая сталь	084Z2113R
MBT 5250R	Датчик погружной, L = 200 мм, (–50+200 °C), нержавеющая сталь	084Z2257R

Термопреобразователи сопротивления платиновые серии МВТ

Номенклатура и коды для оформления заказа (продолжение)

Гильзы для монтажа термопреобразователей сопротивления платиновых MBT 5250R

Длина погружной части термопреобразователя, мм	Присоединение	Кодовый номер
50		084Z7258R
100		084Z7259R
150	G ½ А внутренняя − G ½ А наружная	084Z7260R
200		084Z7261R
250		084Z7262R

Технические характеристики

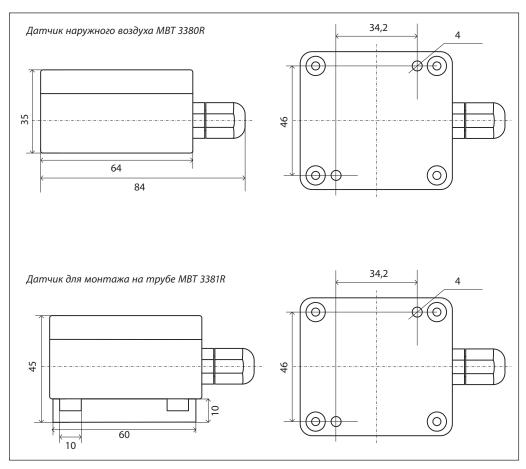
MBT3380R, MBT3381R

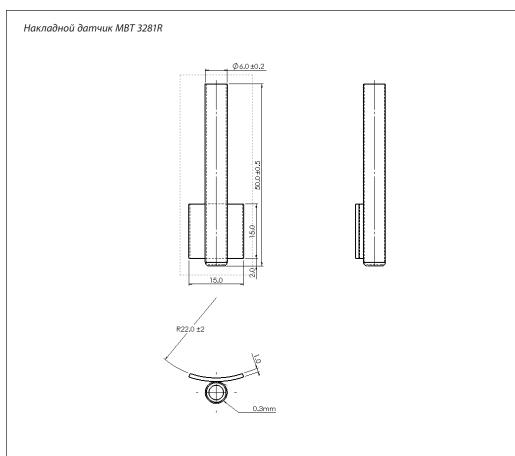
Диапазон измеряемой температуры, °С	От –50 до +95 (МВТ3380R) От –60 до +180 (МВТ3381R)
Тип чувствительного элемента	Pt1000
Точность	Класс В: ±(0,3 +0,005 t)
Клеммы	Быстрозажимные, до 1,5 мм²
Корпус	Поликарбонат
Класс защиты	IP65
Комплектность (для MBT3381R)	Металлические хомуты и термопаста

MBT 3281R

Диапазон измеряемой температуры, °С	От –50 до +110
Тип чувствительного элемента	Pt1000
Точность	Класс В: ±(0,3 +0,005 t)

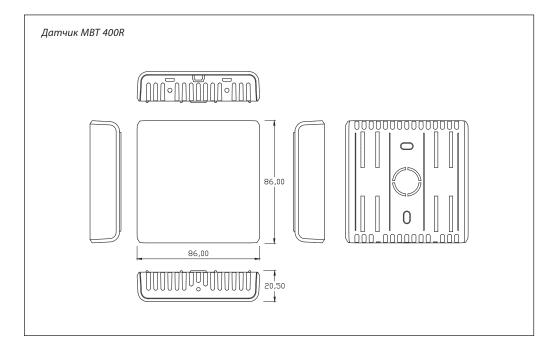
MBT 400R

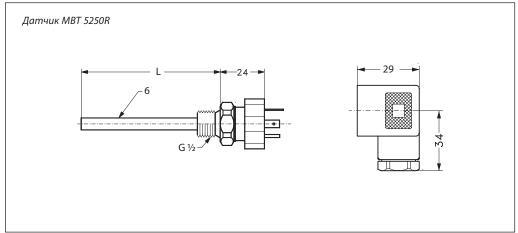

Диапазон измеряемой температуры, °С	От -50 до +110
Тип чувствительного элемента	Pt 1000
Точность	Класс B: ±(0,3 +0,005 t)
Крышка датчика	ABS
Основание датчика	РС (поликарбонат)
Класс защиты	IP41


MBT 5250R

Диапазон измеряемой температуры, °С	От –50 до +200
Тип чувствительного элемента	Pt1000
Точность	Класс В: ± (0,3 +0,005 t)
Длина погружной части гильзы, мм	50250
Материал защитной гильзы	Нержавеющая сталь
Материал наружной части	Нержавеющая сталь
Резьбовое соединение	Нержавеющая сталь
Корпус головки	Пластик (штекер DIN 43650)
Класс защиты	IP65

Габаритные размеры





Габаритные размеры

(продолжение)

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Реле давления серии КРІ

Описание и область применения

Реле давления КРI35R, КРI36R, КРI38R предназначены для регулирования, текущего контроля и аварийной сигнализации в промышленности. Устанавливаются в системах с жидкими и газообразными средами.

Реле давления снабжены однополюсными выключателями, которые замыкают или размыкают электрическую цепь при изменении давления в системе по сравнению с заданным давлением.

Реле давления серии KPI не являются средством измерения.

Основные характеристики

- Диапазон давлений уставки от –0,2 до 32 бар позволяет подобрать нужное значение уставки для большинства применений.
- Температура рабочей среды от –20 до +120 °C.
- Материалы, контактирующие со средой: латунь/бронза.

Номенклатура и коды для оформления заказа

Тип	Присоединение	Диапазон уставок, бар	Дифференциал, бар	Максимальное рабочее давление, бар	Кодовый номер
KPI35R	G 1/4	-0,2-7,5	0,7-4	17	060-121766R
KPI35R	G 1/2	-0,2-7,5	0,7-4	17	060-132466R
KPI35R	G 1/2	-0,2-8	0,4-1,5	17	060-132566R
KPI36R	G 1/4	2–14	1–4	17	060-118966R
KPI38R	G 1/4	8–32	2–6	35	060-508166R

Реле давления серии КРІ

Технические характеристики

Температура окружающей среды, °C	-40+65 (на короткий период до +80)		
Температура рабочей среды, °C	-20+120		
Рабочая среда	Вода, воздух, масло		
Материалы,	сильфон	Жесть, покрытая бронзой	
контактирующие со средой	коннектор	Латунь	
Контактная система	Однополюсный перекидной контакт, автоматический сброс		
	Переменный ток		
	АС–1 омическая нагрузка	16 A, 400 B	
Допустимая	АС–3 электродвигатель	16 A, 400 B	
электрическая нагрузка на контактную систему	АС–15 индуктивная нагрузка	10 A, 400 B	
individually to concreasing	Постоянный ток		
	DC-3 нагрузка	12 Вт, 220 В	
Подключение кабеля	Уплотняемый ввод для кабелей диаметром 6–14 мм		
Класс защиты корпуса	IP30 при монтаже на плоскую поверхность и закрытых неиспользуемых отверстий		
	IP44 при соблюдении условий для IP 30 и установке верхней крышки		
Комплектность	Реле давления, угловой кронштейн, 2 винта, верхняя крышка ІР44		

Устройство реле давления КРІ

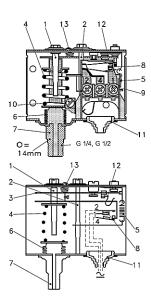


Рис. 1. Устройство реле давления КРІ

- 1. Настроечный шпиндель шкалы «range» 2. Настроечный шпиндель шкалы «diff» 3. Основной рычаг

- 5. Основной рычал 4. Пружина шкалы «range» 5. Пружина шкалы «diff» 6. Сильфон 7. Присоединительный штуцер
- 8. Клеммная панель
- 9. Клемма
- 10. Заземление
- 11. Кабельный вход 12. Омегообразная пружина
- 13. Стопорный винт

Выбор типоразмера

Подбор осуществляется по таблице «Номенклатура и коды для оформления заказа» следующим образом:

- 1. Определите необходимый диапазон уставок (настройки) работы реле давления.
- 2. В зависимости от диапазона уставок выберите модификацию реле давления.
- 3. В зависимости от дифференциала выберите код для заказа реле давления.

Установка давления отключения (уставки)

- 1. Ослабьте стопорный винт 13 на крышке прибора (Рис. 1).
- 2. Поверните с помощью крестовой отвертки настроечного шпинделя 1.
- 3. Установите необходимое давление по шкале «range» на лицевой части прибора, при котором контакты 1–2 будут размыкаться.
- 4. После установки заверните до упора стопорный винт 13.

Установка дифференциала:

- Ослабьте стопорный винт 13 на крышке прибора.
- 2. Поверните с помощью крестовой отвертки винт настроечного шпинделя дифференциала 2.
- 3. По шкале «diff» на лицевой части прибора установите необходимое значение.
- 4. После установки заверните до упора стопорный винт 13.

Проверка прибора

- 1. Подключите прибор к трубопроводу, открыв шаровой кран на импульсной линии.
- 2. Создайте требуемое давление в импульсной линии (необходимо наличие манометра на трубопроводе).
- 3. При достижении установленного давления (шкала range) замыкаются контакты 1 и 4.
- 4. Плавно понизьте давление в системе.
- 5. При понижении давления ниже дифференциала, заданного на шкале diff, должны замкнуться контакты 1 и 2.

Пример работы реле давления KPI, установленного на узле подпитки

Настройка прибора

Шкала «range» – 6 бар. Шкала «diff» – 1,5 бар.

Работа прибора

При номинальном давлении выше 6 бар у прибора замкнуты контакты 1 и 4 (Рис. 2.). В системе происходит падение давления (утечка), клеммы находятся в том же положении, однако

как только давление снижается до значения 4,5 бар, происходит размыкание контактов 1–4 и замыкание контактов 1–2, и открывается электромагнитный клапан. Производится подпитка системы из обратного трубопровода тепловой сети. Когда давление в сети выросло до значения 6 бар, происходит обратное переключение с 2 на 4 клемму, электромагнитный клапан закрывается.

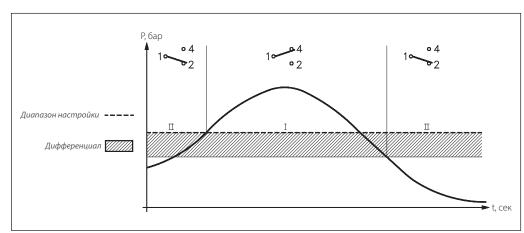
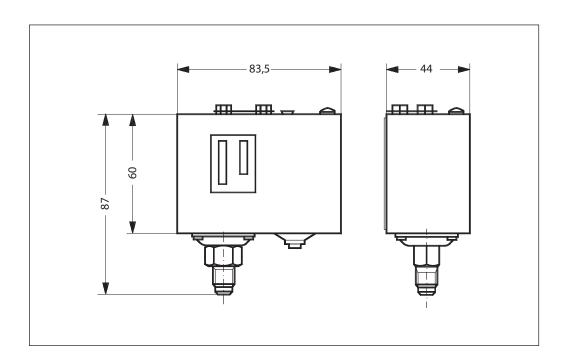



Рис. 2. Переключение контактов

Габаритные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», поготип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Реле перепада давления RT262R

Описание и область применения

Реле перепада давления RT262R предназначены для применения в системах автоматизации, технологических защит и блокировок. Наиболее распространенное применение реле перепада давления — это реализация функции отслеживания работоспособности насоса.

Основные характеристики

- Диапазон давлений уставки от 0,5 до 3,5 бар.
- Температура рабочей среды от −40 до +120 °C.
- Материалы, контактирующие со средой: латунь.

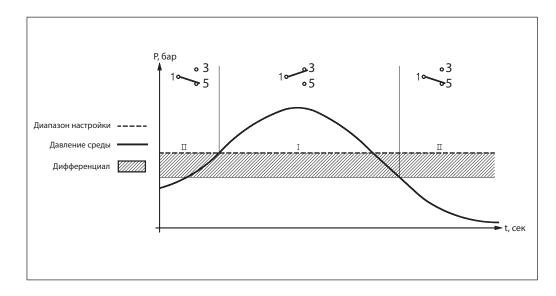
Для монтажа рекомендуется использовать две демпферные трубки 060-104766R:

- Длина: 1,5 м;
- Материал: медь;
- Присоединение: внутренняя резьба G ½, внешняя резьба G ½.

Номенклатура и коды для оформления заказа

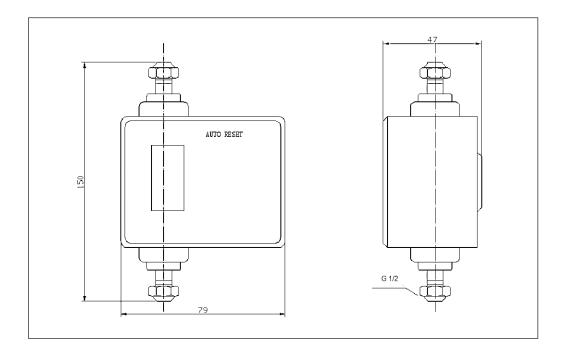
Тип	Присоединение	Диапазон уставок, бар	Дифференциал, бар	Максимальное рабочее давление, бар	Кодовый номер
RT262R	G ½	0,5–3,5	От 0,3 до 0,5 (фиксированное значение в данном диапазоне)	16,5	017D002566R

Реле перепада давления RT262R


Технические характеристики

Диапазон настройки уставки перепада давления, бар	От 0,5 до 3,5		
Заводская уставка (может быть перенастроена), бар	1		
Дифференциал (зона возврата), бар	От 0,3 до 0,5 (фиксированное	значение)	
Максимальное рабочее давление, бар	16,5		
Рабочая среда	Вода, нейтральные жидкости		
Температура рабочей среды, °С	От –40 до +120		
Температура окружающей среды, °С	От –20 до +70		
Присоединение импульсных линий	2 штуцера с внешней резьбой G ½		
Контактная система	Однополюсный перекидной контакт (срабатывание на увеличение перепада давления)	4 Start Diff	
Допустимая электрическая нагрузка на	8 A, 220 B		
контактную систему	16 A, 110 B		
Электрическое присоединение	Кабельный ввод		
Класс защиты	IP 20		
Macca	0,57 кг		
Матариали контактириания со сродой	сильфон	Латунь	
Материалы, контактирующие со средой	присоединительный штуцер	Латунь	

Принцип действия реле давления RT262R


Когда разность давления между контролируемыми точками увеличится до установленного на шкале значения, контакты 1–3 замкнутся, а контакты 1–5 разомкнутся.

При снижении разности давления от значения, установленного на шкале настройки, минус дифференциал контакты 1–3 размыкаются и замыкаются контакты 1–5.

Реле перепада давления RT262R

Габаритные размеры

Центральный офис • Компания «Ридан»

Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217. Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки упомянутые в этом издании являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.

Преобразователь (датчик) давления MBS 1700R

Описание и область применения

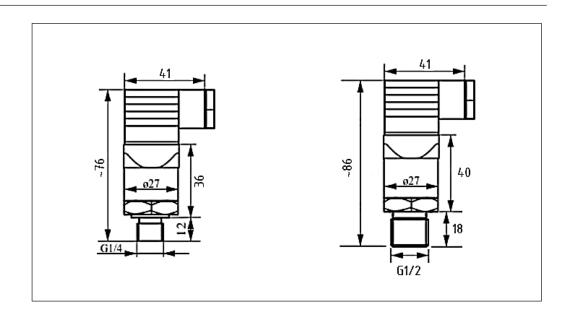
Преобразователь (датчик) давления MBS 1700R предназначен для измерения давлений жидкостей и газов в промышленности.

Не предназначен для применения в сфере государственного регулирования обеспечения единства измерений.

Основные характеристики

- Выходной сигнал: 4-20 мА, 0-10 В.
- Диапазоны измерения: 0–6 бар, 0–10 бар, 0–16 бар, 0–25 бар, 0–40 бар, 0–60 бар, 0–100 бар, 0–160 бар, 0–250 бар, 0–400 бар.
- Штуцер с наружной резьбой: G ¼, G ½, M20×1,5.
- Материалы, контактирующие со средой: нержавеющая сталь AISI 316.

Номенклатура и коды для оформления заказа

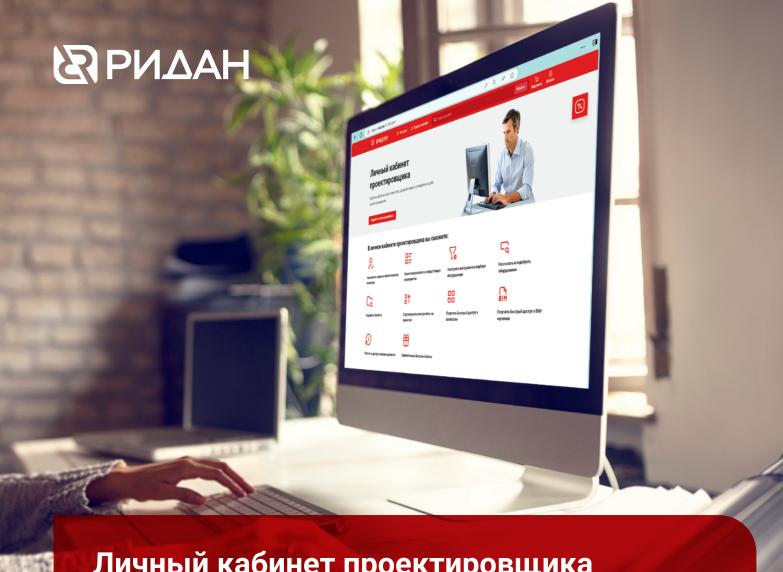

Диапазон измерений, бар	Присоединение давления	Выходной сигнал	Код для заказа
0 – 6			060G6100R
0 – 10			060G6101R
0 – 16	G 1/4		060G6102R
0 – 25			060G6103R
0 – 40			060G6113R
0 – 6			060G6104R
0 – 10			060G6105R
0 – 16	G 1/2		060G6106R
0 – 25		4–20 mA	060G6107R
0 – 40		4-20 MA	060G6114R
0 – 60			060G6108R
0 – 100	G ¼		060G6112R
0 – 160			060G6109R
0 – 250			060G6110R
0 – 400			060G6111R
0 – 6			060G3820R
0 – 10	M20×1,5		060G3821R
0 – 16			060G3822R
0 – 6			060G6204R
0 – 10	G 1/2	0 10 P	060G6205R
0 – 16	G ½	0–10 B	060G6206R
0 – 25			060G6207R

Технические характеристики

Метрологические и механические характеристики				
Рабочая среда	Газы и жидкости			
Тип измеряемого давления	Избыточное			
Диапазон измерений, бар	0-6,, 0-400			
Диапазон рабочих температур, °С	От –20 до 85			
Пределы допускаемой основной приведенной погрешности	±0,5 % диапазона измерений			
Дополнительная погрешность на изменение температуры окружающего воздуха	± 0,15 % диапазона измерений/10°C			
Предельное давление перегрузки	3-кратный диапазон измерений			
Давление разрыва чувствительного элемента	>3-кратный диапазон измерений			
Технологическое присоединение	G ¼, G ½, M20×1,5			
Материал частей, контактирующих со средой	Нержавеющая сталь AISI 316L			
Корпус Нержавеющая сталь AISI 316L или <i>A</i>				
Вес, кг 0,25				
Электрические характеристики				
Выходной сигнал	4–20 мA или 0–10 B			
Напряжение питания U _{пит} , В	24			

Габаритные размеры

Центральный офис • Компания «Ридан»


Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217.

Телефоны: +7 (495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы) • E-mail he@ridan.ru • ridan.ru

Подбор контроллеров ECL

Количество контуров	Тип системы	Количество насосов	Приводы клапанов	Версия контроллера ECL
	со	До 2-х с ПЧ	Импульсные ARV, AMV	ECL-3R 331
			Аналоговые ARE, AME	
1	ГВС	До 2-х с ПЧ	Импульсные ARV, AMV	ECL-3R 317
	IBC		Аналоговые ARE, AME	
	СО+ГВС	До 2-х на каждом контуре	Импульсные ARV, AMV	ECL-3R 368
			Аналоговые ARE, AME	
		До 2-х с ПЧ на каждом контуре	Импульсные ARV, AMV	ECL-4 368 ПЧ
2			Аналоговые ARE, AME	ECL-3R (331+317)
2	CO+CO	До 2-х на каждом контуре	Импульсные ARV, AMV	ECL-3R 361
			Аналоговые ARE, AME	ECL-4 361
		До 2-х с ПЧ на каждом контуре	Импульсные ARV, AMV	ECL-3R 331
			Аналоговые ARE, AME	ECL JR JJ I

Контроллер насосной группы	ECL-3R Pumps	
Контроллер системы приточной вентиляции	ECL-3R AHU	
Дополнительные датчики	ECL-3R MM	

Личный кабинет проектировщика

Удобное рабочее пространство, созданное специально для проектировщиков

Плагин DCAD

Расчёт и проектирование различных систем

Обучение

Семинары и вебинары с экспертами отрасли

Инструменты

Подбор теплообменников и другого оборудования

Форум Community

Актуальные вопросы и ответы на нашем форуме

Компания «Ридан» • Россия, 143581 Московская обл., м. о. Истра, дер. Лешково, 217.

Компания «Ридан» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые знаки в этом материале являются собственностью соответствующих компаний. «Ридан», логотип «Ридан» являются торговыми знаками компании «Ридан». Все права защищены.